Suppr超能文献

改善干预措施设计,以促进哥伦比亚波哥大难以接触到的妇女进行宫颈癌筛查:评估信念和预测个体参与率。

Improving intervention design to promote cervical cancer screening among hard-to-reach women: assessing beliefs and predicting individual attendance probabilities in Bogotá, Colombia.

机构信息

Southampton Business School, University of Southampton, Southampton, UK.

Departamento de Ingeniería Industrial, Pontificia Universidad Javeriana, Bogotá, Colombia.

出版信息

BMC Womens Health. 2022 Jun 7;22(1):212. doi: 10.1186/s12905-022-01800-3.

Abstract

BACKGROUND

Despite being a preventable disease, cervical cancer continues to be a public health concern, affecting mainly lower and middle-income countries. Therefore, in Bogotá a home-visit based program was instituted to increase screening uptake. However, around 40% of the visited women fail to attend their Pap smear test appointments. Using this program as a case study, this paper presents a methodology that combines machine learning methods, using routinely collected administrative data, with Champion's Health Belief Model to assess women's beliefs about cervical cancer screening. The aim is to improve the cost-effectiveness of behavioural interventions aiming to increase attendance for screening. The results presented here relate specifically to the case study, but the methodology is generic and can be applied in all low-income settings.

METHODS

This is a cross-sectional study using two different datasets from the same population and a sequential modelling approach. To assess beliefs, we used a 37-item questionnaire to measure the constructs of the CHBM towards cervical cancer screening. Data were collected through a face-to-face survey (N = 1699). We examined instrument reliability using Cronbach's coefficient and performed a principal component analysis to assess construct validity. Then, Kruskal-Wallis and Dunn tests were conducted to analyse differences on the HBM scores, among patients with different poverty levels. Next, we used data retrieved from administrative health records (N = 23,370) to fit a LASSO regression model to predict individual no-show probabilities. Finally, we used the results of the CHBM in the LASSO model to improve its accuracy.

RESULTS

Nine components were identified accounting for 57.7% of the variability of our data. Lower income patients were found to have a lower Health motivation score (p-value < 0.001), a higher Severity score (p-value < 0.001) and a higher Barriers score (p-value < 0.001). Additionally, patients between 25 and 30 years old and with higher poverty levels are less likely to attend their appointments (O.R 0.93 (CI: 0.83-0.98) and 0.74 (CI: 0.66-0.85), respectively). We also found a relationship between the CHBM scores and the patient attendance probability. Average AUROC score for our prediction model is 0.9.

CONCLUSION

In the case of Bogotá, our results highlight the need to develop education campaigns to address misconceptions about the disease mortality and treatment (aiming at decreasing perceived severity), particularly among younger patients living in extreme poverty. Additionally, it is important to conduct an economic evaluation of screening options to strengthen the cervical cancer screening program (to reduce perceived barriers). More widely, our prediction approach has the potential to improve the cost-effectiveness of behavioural interventions to increase attendance for screening in developing countries where funding is limited.

摘要

背景

尽管宫颈癌是一种可预防的疾病,但它仍然是一个公共卫生关注的问题,主要影响中低收入国家。因此,在波哥大,建立了一个基于家访的项目来提高筛查率。然而,大约 40%的被访妇女未能参加巴氏涂片检查预约。本文以该项目为案例研究,提出了一种结合机器学习方法和冠军健康信念模型(CHBM)的方法,以评估妇女对宫颈癌筛查的信念。其目的是提高旨在提高筛查参与度的行为干预措施的成本效益。这里呈现的结果专门针对该案例研究,但该方法是通用的,可以应用于所有低收入环境。

方法

这是一项使用同一人群的两个不同数据集的横断面研究和顺序建模方法。为了评估信念,我们使用了 37 项问卷来衡量 CHBM 对宫颈癌筛查的构建。数据通过面对面调查(N=1699)收集。我们使用 Cronbach 系数检验了仪器的可靠性,并进行了主成分分析以评估结构效度。然后,我们进行了 Kruskal-Wallis 和 Dunn 检验,以分析不同贫困水平患者的 HBM 得分差异。接下来,我们使用从医疗记录中检索到的数据(N=23370)来拟合 LASSO 回归模型,以预测个体不出现的概率。最后,我们使用 CHBM 的结果来改进 LASSO 模型的准确性。

结果

确定了九个组成部分,占我们数据变异性的 57.7%。较低收入的患者被发现健康动机评分较低(p 值<0.001),严重程度评分较高(p 值<0.001),障碍评分较高(p 值<0.001)。此外,25-30 岁和贫困程度较高的患者不太可能参加预约(OR 0.93(CI:0.83-0.98)和 0.74(CI:0.66-0.85))。我们还发现 CHBM 评分与患者就诊概率之间存在关系。我们的预测模型的平均 AUROC 评分为 0.9。

结论

在波哥大的情况下,我们的结果强调需要开展教育运动,以解决对疾病死亡率和治疗的误解(旨在降低感知严重程度),特别是在生活在极端贫困中的年轻患者中。此外,对筛查方案进行经济评估以加强宫颈癌筛查计划(以减少感知障碍)非常重要。更广泛地说,我们的预测方法有可能提高发展中国家增加筛查参与度的行为干预措施的成本效益,因为这些国家的资金有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ab/9175370/5e7e9b8ddead/12905_2022_1800_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验