Suppr超能文献

在临床决策支持系统中覆盖药物相互作用警报:范围综述。

Overriding Drug-Drug Interaction Alerts in Clinical Decision Support Systems: A Scoping Review.

机构信息

Department of Pharmacy Practice, College of Pharmacy, Mercer University, Atlanta, Georgia, USA.

College of Engineering, The University of Arizona, Tucson, Arizona, USA.

出版信息

Stud Health Technol Inform. 2022 Jun 6;290:380-384. doi: 10.3233/SHTI220101.

Abstract

Ineffective computerized alerts for potential Drug-Drug Interactions (DDI) is a longstanding informatics issue. Prescribing clinicians often ignore or override such alerts due to lack of context and clinical relevance, among various other reasons. In this study, we reveiwed published data on the rate of DDI alert overrides and medications involved in the overrides. We identified 34 eligible studies from sites across Asia, Europe, the United States, and the United Kingdom. The override rate of DDI alerts ranged from 55% to 98%, with more than half of the studies reporting the most common drug pairs or medications involved in acceptance or overriding of alerts. The high prevalance of alert overrides highlights the need for decision support systems that take user, drug, and institutional factors into consideration, as well as actionable metrics to better characterize harm associated with overrides.

摘要

计算机化的潜在药物-药物相互作用(DDI)警报无效是一个长期存在的信息学问题。由于缺乏上下文和临床相关性等各种原因,开处方的临床医生经常忽略或覆盖这些警报。在这项研究中,我们回顾了已发表的关于 DDI 警报覆盖率以及覆盖所涉及的药物的数据。我们从亚洲、欧洲、美国和英国的多个地点确定了 34 项符合条件的研究。DDI 警报的覆盖率范围从 55%到 98%,超过一半的研究报告了最常见的药物对或参与接受或覆盖警报的药物。警报覆盖率高突显了需要考虑用户、药物和机构因素的决策支持系统,以及用于更好地描述与覆盖相关的危害的可操作指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验