Department of Biology, Grupo de Herpetología, Eco-Fisiología & Etología, Universidad del Tolima, Tolima, Colombia.
Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia.
J Exp Zool A Ecol Integr Physiol. 2022 Aug;337(7):746-759. doi: 10.1002/jez.2632. Epub 2022 Jun 8.
Current climate change is generating accelerated increase in extreme heat events and organismal plastic adjustments in upper thermal tolerances, (critical thermal maximum -CT ) are recognized as the quicker mitigating mechanisms. However, current research casts doubt on the actual mitigating role of thermal acclimation to face heat impacts, due to its low magnitude and weak environmental signal. Here, we examined these drawbacks by first estimating maximum extent of thermal acclimation by examining known sources of variation affecting CT expression, such as daily thermal fluctuation and heating rates. Second, we examined whether the magnitude and pattern of CT plasticity is dependent of the thermal environment by comparing the acclimation responses of six species of tropical amphibian tadpoles inhabiting thermally contrasting open and shade habitats and, finally, estimating their warming tolerances (WT = CT - maximum temperatures) as estimator of heating risk. We found that plastic CT responses are improved in tadpoles exposed to fluctuating daily regimens. Slow heating rates implying longer duration assays determined a contrasting pattern in CT plastic expression, depending on species environment. Shade habitat species suffer a decline in CT whereas open habitat tadpoles greatly increase it, suggesting an adaptive differential ability of hot exposed species to quick hardening adjustments. Open habitat tadpoles although overall acclimate more than shade habitat species, cannot capitalize this beneficial increase in CT because the maximum ambient temperatures are very close to their critical limits, and this increase may not be large enough to reduce acute heat stress under the ongoing global warming.
当前的气候变化导致极端高温事件加速增加,生物对热耐受上限的可塑性调整(临界热最大值 - CT)被认为是更快的缓解机制。然而,由于其幅度较小且环境信号较弱,当前的研究对热驯化在应对热冲击方面的实际缓解作用提出了质疑。在这里,我们首先通过检查影响 CT 表达的已知变异性来源,例如每日热波动和加热率,来估计热驯化的最大程度,从而检验了这些缺点。其次,我们通过比较栖息在热对比度开放和阴凉栖息地的六种热带两栖类蝌蚪的驯化反应,检查了 CT 可塑性的幅度和模式是否取决于热环境。最后,我们估计了它们的升温容忍度(WT = CT - 最大温度)作为加热风险的估计值。我们发现,暴露于波动的日常方案中的蝌蚪的塑料 CT 反应得到了改善。缓慢的加热速率意味着较长时间的测定会根据物种环境确定 CT 可塑性表达的相反模式。阴凉栖息地的物种 CT 下降,而开放栖息地的蝌蚪则大大增加,这表明热暴露物种具有快速硬化适应的适应性差异能力。尽管开放栖息地的蝌蚪总体上比阴凉栖息地的物种更能适应,但由于最大环境温度非常接近其临界极限,因此这种有益的 CT 增加可能不足以减少正在进行的全球变暖下的急性热应激。