Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, United States of America.
Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America.
PLoS One. 2019 Aug 1;14(8):e0219759. doi: 10.1371/journal.pone.0219759. eCollection 2019.
Climate change is affecting biodiversity and ecosystem function worldwide, and the lowland tropics are of special concern because organisms living in this region experience temperatures that are close to their upper thermal limits. However, it remains unclear how and whether tropical lowland species will be able to cope with the predicted pace of climate warming. Additionally, there is growing interest in examining how quickly thermal physiological traits have evolved across taxa, and whether thermal physiological traits are evolutionarily conserved or labile. We measured critical thermal maximum (CTmax) and minimum (CTmin) in 56 species of lowland Amazonian frogs to determine the extent of phylogenetic conservatism in tolerance to heat and cold, and to predict species' vulnerability to climate change. The species we studied live in sympatry and represent ~65% of the known alpha diversity at our study site. Given that critical thermal limits may have evolved differently in response to different temperature constraints, we tested whether CTmax and CTmin exhibit different rates of evolutionary change. Measuring both critical thermal traits allowed us to estimate species' thermal breadth and infer their potential to respond to abrupt changes in temperature (warming and cooling). Additionally, we assessed the contribution of life history traits and found that both critical thermal traits were correlated with species' body size and microhabitat use. Specifically, small direct-developing frogs in the Strabomantidae family appear to be at highest risk of thermal stress while tree frogs (Hylidae) and narrow mouthed frogs (Microhylidae) tolerate higher temperatures. While CTmax and CTmin had considerable variation within and among families, both critical thermal traits exhibited similar rates of evolutionary change. Our results suggest that 4% of lowland rainforest frogs assessed will experience temperatures exceeding their CTmax, 25% might be moderately affected and 70% are unlikely to experience pronounced heat stress under a hypothetical 3°C temperature increase.
气候变化正在影响全球的生物多样性和生态系统功能,而低地热带地区尤其令人关注,因为生活在这个地区的生物所经历的温度接近其热极限上限。然而,目前尚不清楚热带低地物种将如何以及是否能够应对预计的气候变暖速度。此外,人们越来越关注研究跨分类群的热生理特征演变的速度,以及热生理特征是否具有进化保守性或不稳定性。我们测量了 56 种低地亚马逊青蛙的临界热最大值 (CTmax) 和最小值 (CTmin),以确定对热和冷的耐受性在进化上的保守程度,并预测物种对气候变化的脆弱性。我们研究的物种生活在同域中,代表了我们研究地点已知的 alpha 多样性的约 65%。由于临界热极限可能因对不同温度限制的不同响应而有所不同,因此我们测试了 CTmax 和 CTmin 是否表现出不同的进化变化率。测量这两个临界热特征使我们能够估计物种的热幅宽,并推断它们对温度(升温或降温)的突然变化做出响应的潜力。此外,我们评估了生活史特征的贡献,发现这两个临界热特征都与物种的体型和微生境使用有关。具体而言,Strabomantidae 科的小型直接发育的青蛙似乎面临最大的热应激风险,而树蛙 (Hylidae) 和窄口蛙 (Microhylidae) 则能耐受更高的温度。虽然 CTmax 和 CTmin 在家族内和家族间都有很大的变化,但这两个临界热特征都表现出相似的进化变化率。我们的研究结果表明,在评估的低地雨林青蛙中,有 4%可能会经历超过 CTmax 的温度,25%可能会受到中度影响,而 70%在假设的 3°C 温度升高下不太可能经历明显的热应激。