Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.
Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States.
Nano Lett. 2022 Jun 22;22(12):4694-4701. doi: 10.1021/acs.nanolett.2c00674. Epub 2022 Jun 8.
Semiconductor nanocrystals are promising candidates for generating chemical feedstocks through photocatalysis. Understanding the role of ligands used to prepare colloidal nanocrystals in catalysis is challenging due to the complexity and heterogeneity of nanocrystal surfaces. We use single-molecule fluorescence imaging to map the spatial distribution of active regions along individual tungsten oxide nanowires before and after functionalizing them with ascorbic acid. Rather than blocking active sites, we observed a significant enhancement in activity for photocatalytic water oxidation after treatment with ascorbic acid. While the initial nanowires contain inactive regions dispersed along their length, the functionalized nanowires show high uniformity in their photocatalytic activity. Spatial colocalization of the active regions with their surface chemical properties shows that oxidation of ascorbic acid during photocatalysis generates new oxygen vacancies along the nanowire surface. We demonstrate that controlling surface-ligand redox chemistry during photocatalysis can enhance the active site concentration on nanocrystal catalysts.
半导体纳米晶体是通过光催化生成化学原料的有前途的候选者。由于纳米晶体表面的复杂性和异质性,理解用于制备胶体纳米晶体的配体在催化中的作用具有挑战性。我们使用单分子荧光成像来绘制钨氧化物纳米线在功能化之前和之后的活性区域的空间分布,用抗坏血酸进行功能化。我们观察到在用抗坏血酸处理后,光催化水氧化的活性显著增强,而不是阻止活性位点。虽然初始纳米线包含沿其长度分散的非活性区域,但功能化的纳米线显示出其光催化活性的高度均匀性。活性区域与表面化学性质的空间共定位表明,光催化过程中抗坏血酸的氧化会在纳米线表面生成新的氧空位。我们证明,在光催化过程中控制表面配体氧化还原化学可以提高纳米晶体催化剂上的活性位点浓度。