Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
J Am Chem Soc. 2022 Jun 22;144(24):10870-10887. doi: 10.1021/jacs.2c03275. Epub 2022 Jun 8.
It is imperative to identify the network of residues essential to the allosteric coupling for the purpose of rationally engineering allostery in proteins. Deep mutational scanning analysis has emerged as a function-centric approach for identifying such allostery hotspots in a comprehensive and unbiased fashion, leading to observations that challenge our understanding of allostery at the molecular level. Specifically, a recent deep mutational scanning study of the tetracycline repressor (TetR) revealed an unexpectedly broad distribution of allostery hotspots throughout the protein structure. Using extensive molecular dynamics simulations (up to 50 μs) and free energy computations, we establish the molecular and energetic basis for the strong anticooperativity between the ligand and DNA binding sites. The computed free energy landscapes in different ligation states illustrate that allostery in TetR is well described by a conformational selection model, in which the apo state samples a broad set of conformations, and specific ones are selectively stabilized by either ligand or DNA binding. By examining a range of structural and dynamic properties of residues at both local and global scales, we observe that various analyses capture different subsets of experimentally identified hotspots, suggesting that these residues modulate allostery in distinct ways. These results motivate the development of a thermodynamic model that qualitatively explains the broad distribution of hotspot residues and their distinct features in molecular dynamics simulations. The multifaceted strategy that we establish here for hotspot evaluations and our insights into their mechanistic contributions are useful for modulating protein allostery in mechanistic and engineering studies.
确定对别构偶联至关重要的残基网络对于合理设计蛋白质的别构作用至关重要。深度突变扫描分析已成为一种以功能为中心的方法,可以全面、无偏地识别此类别构热点,从而得出一些观察结果,这些观察结果挑战了我们对分子水平别构作用的理解。具体来说,最近对四环素阻遏物(TetR)的深度突变扫描研究揭示了整个蛋白质结构中别构热点的分布出乎意料地广泛。通过广泛的分子动力学模拟(长达 50 μs)和自由能计算,我们确定了配体和 DNA 结合位点之间强反协同作用的分子和能量基础。不同键合状态下的计算自由能景观表明,TetR 的别构作用很好地由构象选择模型描述,其中apo 状态采样了广泛的构象集,并且特定构象通过配体或 DNA 结合被选择性稳定。通过检查局部和全局尺度上的各种结构和动态性质,我们观察到不同的分析方法捕捉到了实验鉴定的热点的不同子集,这表明这些残基以不同的方式调节别构作用。这些结果促使我们开发了一个热力学模型,该模型定性地解释了热点残基的广泛分布及其在分子动力学模拟中的不同特征。我们在这里建立的用于热点评估的多方面策略以及我们对其在机制研究中的机械贡献的见解对于调节蛋白质的别构作用在机制和工程研究中非常有用。