Suppr超能文献

通过整合结构质谱和计算建模深入了解糖原磷酸化酶的磷酸化诱导的蛋白质变构和构象动力学。

Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling.

机构信息

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China.

Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China.

出版信息

ACS Chem Biol. 2022 Jul 15;17(7):1951-1962. doi: 10.1021/acschembio.2c00393. Epub 2022 Jun 8.

Abstract

Allosteric regulation plays a fundamental role in innumerable biological processes. Understanding its dynamic mechanism and impact at the molecular level is of great importance in disease diagnosis and drug discovery. Glycogen phosphorylase (GP) is a phosphoprotein responding to allosteric regulation and has significant biological importance to glycogen metabolism. Although the atomic structures of GP have been previously solved, the conformational dynamics of GP related to allostery regulation remain largely elusive due to its macromolecular size (∼196 kDa). Here, we integrated native top-down mass spectrometry (nTD-MS), hydrogen-deuterium exchange MS (HDX-MS), protection factor (PF) analysis, molecular dynamics (MD) simulations, and allostery signaling analysis to examine the structural basis and dynamics for the allosteric regulation of GP by phosphorylation. nTD-MS reveals differences in structural stability as well as oligomeric state between the unphosphorylated (GPb) and phosphorylated (GPa) forms. HDX-MS, PF analysis, and MD simulations further pinpoint the structural differences between GPb and GPa involving the binding interfaces (the N-terminal and tower-tower helices), catalytic site, and PLP-binding region. More importantly, it also allowed us to complete the missing link of the long-range communication process from the N-terminal tail to the catalytic site caused by phosphorylation. This integrative MS and in silico-based platform is highly complementary to biophysical approaches and yields valuable insights into protein structures and dynamic regulation.

摘要

变构调节在无数的生物过程中起着基本作用。了解其在分子水平上的动态机制和影响,对于疾病诊断和药物发现至关重要。糖原磷酸化酶(GP)是一种对变构调节有反应的磷酸化蛋白,对糖原代谢具有重要的生物学意义。尽管 GP 的原子结构以前已经得到解决,但由于其大分子尺寸(约 196 kDa),与变构调节相关的 GP 构象动力学在很大程度上仍然难以捉摸。在这里,我们整合了天然自上而下的质谱(nTD-MS)、氢氘交换质谱(HDX-MS)、保护因子(PF)分析、分子动力学(MD)模拟和变构信号分析,以检查磷酸化对 GP 变构调节的结构基础和动力学。nTD-MS 揭示了未磷酸化(GPb)和磷酸化(GPa)形式之间结构稳定性和寡聚状态的差异。HDX-MS、PF 分析和 MD 模拟进一步确定了 GPb 和 GPa 之间的结构差异,涉及结合界面(N 端和塔-塔螺旋)、催化位点和 PLP 结合区域。更重要的是,它还使我们能够完成由磷酸化引起的从 N 端尾部到催化位点的长程通讯过程中缺失的环节。这个整合的 MS 和基于计算机的平台高度补充了生物物理方法,并为蛋白质结构和动态调节提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验