Suppr超能文献

FLiPPR:基于 FragPipe 的有限蛋白酶解(LiP)质谱数据集的处理器。

FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe.

机构信息

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

J Proteome Res. 2024 Jul 5;23(7):2332-2342. doi: 10.1021/acs.jproteome.3c00887. Epub 2024 May 24.

Abstract

Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool that facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS) experiments following primary search and quantification in FragPipe. LiP-MS has emerged as a method that can provide proteome-wide information on protein structure and has been applied to a range of biological and biophysical questions. Although LiP-MS can be carried out with standard laboratory reagents and mass spectrometers, analyzing the data can be slow and poses unique challenges compared to typical quantitative proteomics workflows. To address this, we leverage FragPipe and then process its output in FLiPPR. FLiPPR formalizes a specific data imputation heuristic that carefully uses missing data in LiP-MS experiments to report on the most significant structural changes. Moreover, FLiPPR introduces a data merging scheme and a protein-centric multiple hypothesis correction scheme, enabling processed LiP-MS data sets to be more robust and less redundant. These improvements strengthen statistical trends when previously published data are reanalyzed with the FragPipe/FLiPPR workflow. We hope that FLiPPR will lower the barrier for more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data analysis, and systematize output to facilitate eventual larger-scale integration of LiP-MS data.

摘要

在这里,我们介绍了 FLiPPR,即 FragPipe LiP(有限蛋白水解)处理器,这是一种工具,可在 FragPipe 中进行初步搜索和定量后,方便对有限蛋白水解质谱(LiP-MS)实验的数据进行分析。LiP-MS 已成为一种可提供蛋白质结构的全蛋白质组信息的方法,并已应用于一系列生物学和生物物理问题。尽管 LiP-MS 可以使用标准实验室试剂和质谱仪进行,但与典型的定量蛋白质组学工作流程相比,分析数据可能会比较缓慢并且具有独特的挑战。为了解决这个问题,我们利用 FragPipe,然后在 FLiPPR 中处理其输出。FLiPPR 采用了一种特定的数据插补启发式方法,该方法在 LiP-MS 实验中仔细利用缺失数据,以报告最显著的结构变化。此外,FLiPPR 引入了一种数据合并方案和一种以蛋白质为中心的多重假设校正方案,使经过处理的 LiP-MS 数据集更健壮,冗余更少。当使用 FragPipe/FLiPPR 工作流程重新分析以前发表的数据时,这些改进可以增强统计趋势。我们希望 FLiPPR 将降低更多用户采用 LiP-MS 的门槛,标准化 LiP-MS 数据分析的统计程序,并系统化输出,以促进 LiP-MS 数据的更大规模整合。

相似文献

1
FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe.
J Proteome Res. 2024 Jul 5;23(7):2332-2342. doi: 10.1021/acs.jproteome.3c00887. Epub 2024 May 24.
2
FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Datasets Built on FragPipe.
bioRxiv. 2023 Dec 5:2023.12.04.569947. doi: 10.1101/2023.12.04.569947.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
4
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).
Cochrane Database Syst Rev. 2018 Jul 12;7(7):CD012556. doi: 10.1002/14651858.CD012556.pub2.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

引用本文的文献

4
Proteome-Wide Assessment of Protein Structural Perturbations Under High Pressure.
PRX Life. 2024 Sep;2(3). doi: 10.1103/prxlife.2.033011. Epub 2024 Sep 9.
6
Protein surface chemistry encodes an adaptive tolerance to desiccation.
bioRxiv. 2024 Oct 10:2024.07.28.604841. doi: 10.1101/2024.07.28.604841.
7
Stability-based approaches in chemoproteomics.
Expert Rev Mol Med. 2024 Apr 12;26:e6. doi: 10.1017/erm.2024.6.
8
Analysis and visualization of quantitative proteomics data using FragPipe-Analyst.
bioRxiv. 2024 Mar 10:2024.03.05.583643. doi: 10.1101/2024.03.05.583643.

本文引用的文献

1
Efficient Analysis of Proteome-Wide FPOP Data by FragPipe.
Anal Chem. 2023 Nov 7;95(44):16131-16137. doi: 10.1021/acs.analchem.3c02388. Epub 2023 Oct 25.
2
Evaluating Proteomics Imputation Methods with Improved Criteria.
J Proteome Res. 2023 Nov 3;22(11):3427-3438. doi: 10.1021/acs.jproteome.3c00205. Epub 2023 Oct 20.
3
Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity.
Mol Cell. 2023 Sep 21;83(18):3360-3376.e11. doi: 10.1016/j.molcel.2023.08.015. Epub 2023 Sep 11.
4
Progress toward Proteome-Wide Photo-Cross-Linking to Enable Residue-Level Visualization of Protein Structures and Networks In Vivo.
Anal Chem. 2023 Jul 18;95(28):10670-10685. doi: 10.1021/acs.analchem.3c01369. Epub 2023 Jun 21.
6
Cross-linking mass spectrometry for mapping protein complex topologies in situ.
Essays Biochem. 2023 Mar 29;67(2):215-228. doi: 10.1042/EBC20220168.
9
A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2210536119. doi: 10.1073/pnas.2210536119. Epub 2022 Nov 23.
10
Dealing with missing values in proteomics data.
Proteomics. 2022 Dec;22(23-24):e2200092. doi: 10.1002/pmic.202200092. Epub 2022 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验