Suppr超能文献

三嗪基腙:基于重氮的卡宾化学的新篇章。

-Triftosylhydrazones: A New Chapter for Diazo-Based Carbene Chemistry.

机构信息

Department of Chemistry, Northeast Normal University, Changchun 130024, China.

Department of Chemistry, University of Pavia, Pavia 27100, Italy.

出版信息

Acc Chem Res. 2022 Jun 21;55(12):1763-1781. doi: 10.1021/acs.accounts.2c00186. Epub 2022 Jun 8.

Abstract

Over recent decades, -sulfonylhydrazones have attracted significant attention in academic and industrial contexts owing to their ease of preparation, versatile reactivity, high stability, and practicality. In particular, the use of -sulfonylhydrazones as precursors for diazo compounds has paved the way for innovative and original organic reactions that are otherwise difficult to achieve. Three key developments are noteworthy in the history of -sulfonylhydrazone chemistry: (1) Bamford and Stevens initially disclosed the application of -tosylhydrazones as a diazo source in 1952; (2) Aggarwal and co-workers investigated -tosylhydrazone salts as diazo precursors for sulfur ylide-mediated asymmetric epoxidation and aziridination in 2001; and (3) Barluenga, Valdés and co-workers first reported Pd-catalyzed cross-coupling reactions with -tosylhydrazones in 2007, thus introducing the direct use of -tosylhydrazones in carbene transfer reactions. In the past 2 decades, the synthetic exploration of -sulfonylhydrazones in carbene chemistry has increased remarkably. -Tosylhydrazones are the most commonly used -sulfonylhydrazones, but they are not easy to decompose and normally need relatively high temperatures (e.g., 90-110 °C). Temperature, as a key reaction parameter, has a significant influence on the selectivity and scope of organic reactions, especially the enantioselectivity. Aggarwal and co-workers have addressed this issue by using -tosylhydrazone salts and achieved a limited number of asymmetric organic reactions, but the method is greatly limited because the salts must be freshly prepared or stored in the dark at -20 °C prior to use. Hence, easily decomposable -sulfonylhydrazones, especially those capable of decomposing at low temperature, should open up new opportunities for the development of -sulfonylhydrazone chemistry. Since 2014, our group has worked toward this goal and eventually identified -2-(trifluoromethyl)benzenesulfonylhydrazone (i.e., -triftosylhydrazone) as an efficient diazo surrogate that can decompose at temperatures as low as -40 °C. This allowed us to carry out a range of challenging synthetic transformations and to broaden the applications of some known reactions of great relevance.In this Account, we report our achievements in the application of -triftosylhydrazones in carbene chemistry. On the basis of the reaction types, such applications can be categorized as (i) C(sp)-H insertion reactions, (ii) defluorinative reactions of fluoroalkyl -triftosylhydrazones, (iii) cycloaddition reactions with alkenes and alkynes, and (iv) asymmetric reactions. Additional applications in Doyle-Kirmse rearrangements and cross-coupling with isocyanides (ours) and benzyl chlorides (from the group of Xia) are also summarized in this Account concerning miscellaneous reactions. In terms of reaction efficiency, selectivity, and functional group tolerance, -triftosylhydrazones are generally superior to traditional -tosylhydrazones because of their easy decomposition. Mechanistic investigations by theoretical calculations provide insights into both the reaction mechanisms and the origin of selectivity. We hope that this Account will inspire broad interest and promote new progress in the synthetic exploration of easily decomposable -sulfonylhydrazones.

摘要

近几十年来,由于 - 磺酰腙易于制备、反应活性多样、稳定性高和实用性强,它们在学术和工业领域引起了极大的关注。特别是,- 磺酰腙作为重氮化合物的前体的应用为原本难以实现的创新和原创有机反应铺平了道路。- 磺酰腙化学史上有三个值得注意的发展:(1)Bamford 和 Stevens 于 1952 年首次披露了 - 对甲苯磺酰腙作为重氮源的应用;(2)Aggarwal 及其同事在 2001 年研究了 - 对甲苯磺酰腙盐作为硫叶立德介导的不对称环氧化和氮丙啶化的重氮前体;(3)Barluenga、Valdés 及其同事于 2007 年首次报道了 Pd 催化的与 - 对甲苯磺酰腙的交叉偶联反应,从而引入了 - 对甲苯磺酰腙在卡宾转移反应中的直接应用。在过去的 20 年中,- 磺酰腙在卡宾化学中的合成探索显著增加。- 对甲苯磺酰腙是最常用的 - 磺酰腙,但它们不易分解,通常需要相对较高的温度(例如,90-110°C)。温度作为关键反应参数,对有机反应的选择性和范围,特别是对映选择性有显著影响。Aggarwal 及其同事通过使用 - 对甲苯磺酰腙盐解决了这个问题,并实现了有限数量的不对称有机反应,但该方法受到极大限制,因为盐必须在使用前新鲜制备或在-20°C 下避光储存。因此,易于分解的 - 磺酰腙,特别是那些能够在低温下分解的 - 磺酰腙,应该为 - 磺酰腙化学的发展开辟新的机会。自 2014 年以来,我们小组一直致力于这一目标,并最终确定 -2-(三氟甲基)苯磺酰腙(即 - 三氟甲苯磺酰腙)为一种有效的重氮替代物,可在低至-40°C 的温度下分解。这使我们能够进行一系列具有挑战性的合成转化,并拓宽了一些具有重要意义的已知反应的应用。在本报告中,我们报告了我们在卡宾化学中应用 - 三氟甲苯磺酰腙的成果。根据反应类型,此类应用可分为(i)C(sp)-H 插入反应,(ii)氟烷基 - 三氟甲苯磺酰腙的脱氟反应,(iii)与烯烃和炔烃的环加成反应,以及(iv)不对称反应。在杂反应方面,我们还总结了 Doyle-Kirmse 重排和与异氰化物(我们小组)和苄基氯化物(Xia 小组)的交叉偶联的其他应用。就反应效率、选择性和官能团耐受性而言,- 三氟甲苯磺酰腙通常优于传统的 - 对甲苯磺酰腙,因为它们易于分解。理论计算的机理研究提供了对反应机制和选择性起源的深入了解。我们希望本报告将激发广泛的兴趣,并促进易分解 - 磺酰腙的合成探索的新进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验