Suppr超能文献

神经肿瘤学中虚拟肿瘤委员会的出现:机遇与挑战。

The Emergence of Virtual Tumor Boards in Neuro-Oncology: Opportunities and Challenges.

作者信息

Ekhator Chukwuyem, Kesari Santosh, Tadipatri Ramya, Fonkem Ekokobe, Grewal Jai

机构信息

Medicine, New York Institute of Technology, College of Osteopathic Medicine, Glen Cove, USA.

Translational Neurosciences, Pacific Neuroscience Institute, Santa Monica, USA.

出版信息

Cureus. 2022 Jun 6;14(6):e25682. doi: 10.7759/cureus.25682. eCollection 2022 Jun.

Abstract

Background Virtual tumor board (VTB) platforms are an important aspect of cancer management. They enable easier access to a multidisciplinary team of experts. To deliver high-quality cancer care, it is necessary to coordinate numerous therapies and providers, share technical knowledge, and maintain open lines of communication among all professionals involved. The VTB is an essential tool in the diagnosis and treatment of brain cancer. For patients with glioma and brain metastases, multidisciplinary tumor board guidelines should guide diagnosis and therapy throughout the course of the illness. VTBs are an emerging resource across various cancer care networks in the United States. Methodology We performed a systematic search of all VTBs incorporating a platform designed for this specific role. We reviewed the records of the Genomet VTB, the Medical University of South Carolina (MUSC) VTB, and Xcures VTB. Summary data examined included the year of launch, demographics, characteristics of cases, average response time, advantages, and how they handle protected health information. Results Overall, 30% of VTBs examined were launched in 2017. All had a Health Insurance Portability and Accountability Act-compliant online environment. On a review of Xcures records, the median age of the female patients was 57 years and the median age of the male patients was 55 years. The data showed that 44% (4.4 out of every 10 patients) with a confirmed treatment chose the VTB integrated option. Overall, 76% of patients in the Xcures registry had primary central nervous system tumors, with at least 556 patients in the tumor registry which included 46% glioblastoma cases (96% primary, 4% secondary). In the MUSC VTB project, 112 thoracic tumor cases and nine neuro-oncology cases were reviewed. The tumor board met weekly, and the average response time was within 24 hours of case review and presentation. The Genomet VTB de-identifies all patient information; this is a virtual platform primarily focused on neuro-oncology cases. Cases involved a median of five specialists most commonly neuro-oncologists, neurosurgeons, radiation oncologists, molecular pathologists, and neuroradiologists. The case review revealed an age range of six months to 84 years (mean age = 44.5 years), with 69.6% males and 30.4% females, 43.5% glioblastomas, 8.7% adenocarcinomas, and 8.7% infratentorial tumors. The average response time observed in all cases was ≤24 hours. Conclusions VTBs allow for quicker expert analysis of cases. This has resulted in an accelerated number of cases reviewed with a shortened communication time. More studies are needed to gain additional insights into user engagement metrics.

摘要

背景 虚拟肿瘤委员会(VTB)平台是癌症管理的一个重要方面。它们使患者更容易接触到多学科专家团队。为了提供高质量的癌症护理,有必要协调多种治疗方法和医疗服务提供者,分享技术知识,并在所有相关专业人员之间保持开放的沟通渠道。VTB是脑癌诊断和治疗的重要工具。对于患有胶质瘤和脑转移瘤的患者,多学科肿瘤委员会指南应在疾病的整个过程中指导诊断和治疗。VTB在美国各地的各种癌症护理网络中是一种新兴资源。

方法 我们对所有采用专门为此特定角色设计的平台的VTB进行了系统搜索。我们审查了Genomet VTB、南卡罗来纳医科大学(MUSC)VTB和Xcures VTB的记录。审查的汇总数据包括推出年份、人口统计学、病例特征、平均响应时间、优势以及它们如何处理受保护的健康信息。

结果 总体而言,所审查的VTB中有30%是在2017年推出的。所有VTB都有符合《健康保险流通与责任法案》的在线环境。在审查Xcures的记录时,女性患者的中位年龄为57岁,男性患者的中位年龄为55岁。数据显示,44%(每10名患者中有4.4名)确诊接受治疗的患者选择了VTB综合选项。总体而言,Xcures登记册中的76%患者患有原发性中枢神经系统肿瘤,肿瘤登记册中至少有556名患者,其中包括46%的胶质母细胞瘤病例(96%为原发性,4%为继发性)。在MUSC VTB项目中,审查了112例胸科肿瘤病例和9例神经肿瘤病例。肿瘤委员会每周开会,平均响应时间在病例审查和报告后的24小时内。Genomet VTB对所有患者信息进行去识别处理;这是一个主要专注于神经肿瘤病例的虚拟平台。病例通常涉及五位专家,最常见的是神经肿瘤学家、神经外科医生、放射肿瘤学家、分子病理学家和神经放射学家。病例审查显示年龄范围为6个月至84岁(平均年龄 = 44.5岁),男性占69.6%,女性占30.4%,胶质母细胞瘤占43.5%,腺癌占8.7%,幕下肿瘤占8.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22b9/9169580/000d10b5bb9a/cureus-0014-00000025682-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验