Büchele Simon, Yakimov Alexander, Collins Sean M, Ruiz-Ferrando Andrea, Chen Zupeng, Willinger Elena, Kepaptsoglou Demie M, Ramasse Quentin M, Müller Christoph R, Safonova Olga V, López Núria, Copéret Christophe, Pérez-Ramírez Javier, Mitchell Sharon
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland.
Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
Small. 2022 Aug;18(33):e2202080. doi: 10.1002/smll.202202080. Epub 2022 Jun 9.
The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.
在单原子多相催化剂中调整金属中心性质的能力取决于用于表征其结构的先进方法的可用性。除了具有明确金属吸附位点的特定主体材料外,确定局部原子环境仍然是一项关键挑战,通常严重依赖于模拟。本文报道了对稳定在聚(三嗪酰亚胺)(一种氮化碳的纳米晶形式)上的铂原子的先进分析。该方法区分了主体中表面配位位点的分布、材料合成过程中不同阶段金属配位的演变以及晶格内金属原子的潜在位置。与密度泛函理论预测一致,在高角度环形暗场和亮场模式下的同步高分辨率成像通过实验证实了铂在三角形空腔角落的面内优先定位。X射线吸收光谱(XAS)、X射线光电子能谱(XPS)以及动态核极化增强的N核磁共振(DNP-NMR)光谱与密度泛函理论(DFT)模拟相结合,揭示了主要的金属物种包括在配位位点内与三个氮原子和一个氯原子结合的Pt(II)。这些发现缩小了实验和理论阐释之间的差距,有助于增进对结构的理解,并为探索基于氮化碳的单原子催化剂的形态提供了一个基准。