Suppr超能文献

基于核磁共振信号的铂单原子催化剂的配位环境

Coordination environments of Pt single-atom catalysts from NMR signatures.

作者信息

Koppe Jonas, Yakimov Alexander V, Gioffrè Domenico, Usteri Marc-Eduard, Vosegaard Thomas, Pintacuda Guido, Lesage Anne, Pell Andrew J, Mitchell Sharon, Pérez-Ramírez Javier, Copéret Christophe

机构信息

Centre de RMN à Très Hauts Champs de Lyon, CNRS/Ecole Normale Supérieure de Lyon/Université Claude Bernard Lyon 1, Villeurbanne, France.

Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.

出版信息

Nature. 2025 Jun;642(8068):613-619. doi: 10.1038/s41586-025-09068-x. Epub 2025 Jun 4.

Abstract

Supported metal catalysts that integrate atomically dispersed species with controlled structures lie at the forefront of catalytic materials design, offering exceptional control over reactivity and high metal utilization, approaching the precision of molecular systems. However, accurately resolving the local metal coordination environments remains challenging, hindering the advancement of structure-activity relationships needed to optimize their design for diverse applications. Although electron microscopy reveals atomic dispersion, conventional spectroscopic methods used in heterogeneous catalysis only provide average structural information. Here we demonstrate that Pt solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing atomically dispersed Pt sites on various supports, so called single-atom catalysts (SACs). Monte Carlo simulations allow the conversion of NMR spectra into SAC signatures that describe coordination environments with molecular precision, enabling quantitative assessment of Pt-site distribution and homogeneity. This methodology can track the influence of synthetic parameters, uncovering the impact of specific steps and support types, and can also monitor changes upon reaction. It offers critical insights for the reproducible development of SACs with targeted structures. Beyond SACs, this approach lays the foundation for studying more complex architectures, such as dual-atom or single-cluster catalysts, containing various NMR-active metals.

摘要

将原子分散的物种与可控结构相结合的负载型金属催化剂处于催化材料设计的前沿,能够对反应活性进行卓越控制并实现高金属利用率,接近分子体系的精准度。然而,准确解析局部金属配位环境仍然具有挑战性,这阻碍了为优化其在各种应用中的设计而建立结构-活性关系的进展。尽管电子显微镜揭示了原子分散情况,但多相催化中使用的传统光谱方法仅提供平均结构信息。在此,我们证明了铂固态核磁共振(NMR)光谱是表征各种载体上原子分散的铂位点(即所谓的单原子催化剂,SACs)的有力工具。蒙特卡罗模拟可将NMR光谱转换为以分子精度描述配位环境的SAC特征,从而能够对铂位点分布和均匀性进行定量评估。这种方法可以追踪合成参数的影响,揭示特定步骤和载体类型的作用,还可以监测反应过程中的变化。它为可重复开发具有目标结构的SACs提供了关键见解。除了SACs,这种方法为研究更复杂的结构(如包含各种具有NMR活性金属的双原子或单簇催化剂)奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b36/12176637/776aa2dddbfb/41586_2025_9068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验