Suppr超能文献

贝叶斯统计引导的标签修复机制:减轻医学图像分类中的标签噪声。

Bayesian statistics-guided label refurbishment mechanism: Mitigating label noise in medical image classification.

机构信息

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.

Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China.

出版信息

Med Phys. 2022 Sep;49(9):5899-5913. doi: 10.1002/mp.15799. Epub 2022 Jun 22.

Abstract

PURPOSE

Deep neural networks (DNNs) have been widely applied in medical image classification, benefiting from its powerful mapping capability among medical images. However, these existing deep learning-based methods depend on an enormous amount of carefully labeled images. Meanwhile, noise is inevitably introduced in the labeling process, degrading the performance of models. Hence, it is significant to devise robust training strategies to mitigate label noise in the medical image classification tasks.

METHODS

In this work, we propose a novel Bayesian statistics-guided label refurbishment mechanism (BLRM) for DNNs to prevent overfitting noisy images. BLRM utilizes maximum a posteriori probability in the Bayesian statistics and the exponentially time-weighted technique to selectively correct the labels of noisy images. The training images are purified gradually with the training epochs when BLRM is activated, further improving classification performance.

RESULTS

Comprehensive experiments on both synthetic noisy images (public OCT & Messidor datasets) and real-world noisy images (ANIMAL-10N) demonstrate that BLRM refurbishes the noisy labels selectively, curbing the adverse effects of noisy data. Also, the anti-noise BLRMs integrated with DNNs are effective at different noise ratio and are independent of backbone DNN architectures. In addition, BLRM is superior to state-of-the-art comparative methods of anti-noise.

CONCLUSIONS

These investigations indicate that the proposed BLRM is well capable of mitigating label noise in medical image classification tasks.

摘要

目的

深度神经网络(DNN)在医学图像分类中得到了广泛应用,受益于其在医学图像之间具有强大的映射能力。然而,这些现有的基于深度学习的方法依赖于大量精心标记的图像。同时,在标记过程中不可避免地会引入噪声,从而降低模型的性能。因此,设计稳健的训练策略来减轻医学图像分类任务中的标签噪声具有重要意义。

方法

在这项工作中,我们提出了一种新的基于贝叶斯统计的 DNN 标签修复机制(BLRM),以防止对噪声图像产生过拟合。BLRM 在贝叶斯统计中利用最大后验概率和指数时间加权技术来有选择地纠正噪声图像的标签。当 BLRM 被激活时,训练图像会随着训练轮次逐渐被净化,从而进一步提高分类性能。

结果

在合成噪声图像(公共 OCT 和 Messidor 数据集)和真实世界噪声图像(ANIMAL-10N)上的综合实验表明,BLRM 有选择地修复了噪声标签,抑制了噪声数据的不良影响。此外,与 DNN 集成的抗噪声 BLRM 在不同噪声比下都很有效,并且不依赖于骨干 DNN 架构。此外,BLRM 优于最新的噪声对抗比较方法。

结论

这些研究表明,所提出的 BLRM 能够很好地减轻医学图像分类任务中的标签噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验