Suppr超能文献

基于带噪标注超声图像的乳腺肿瘤分类。

Breast tumor classification through learning from noisy labeled ultrasound images.

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Sichuan Provincial Peoples's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.

出版信息

Med Phys. 2020 Mar;47(3):1048-1057. doi: 10.1002/mp.13966. Epub 2019 Dec 30.

Abstract

PURPOSE

To train deep learning models to differentiate benign and malignant breast tumors in ultrasound images, we need to collect many training samples with clear labels. In general, biopsy results can be used as benign/malignant labels. However, most clinical samples generally do not have biopsy results. Previous works have proposed generating benign/malignant labels according to Breast Imaging, Reporting and Data System (BI-RADS) ratings. However, this approach will cause noisy labels, which means that the benign/malignant labels produced from BI-RADS diagnoses may be inconsistent with the ground truths. Consequently, deep models will overfit the noisy labels and hence obtain poor generalization performance. In this work, we mainly focus on how to reduce the negative effect of noisy labels when they are used to train breast tumor classification models.

METHODS

We propose an effective approach called noise filter network (NF-Net) to address the problem of noisy labels when training breast tumor classification models. Specifically, to prevent deep models from overfitting the noisy labels, we propose incorporating two softmax layers for classification. Additionally, to strengthen the effect of clean labels, we design a teacher-student module for distilling the knowledge of clean labels.

RESULTS

We conduct extensive comparisons with the existing works on addressing noisy labels. Our method achieves a classification accuracy of 73%, with a precision of 69%, recall of 80%, and F1-score of 0.74. This result is significantly better than those of the existing state-of-the-art works on addressing noisy labels.

CONCLUSIONS

This work provides a means to overcome the label shortage problem in training breast tumor classification models. Specifically, we can generate benign/malignant labels according to the BI-RADS ratings. Although this approach will cause noisy labels, the design of NF-Net can effectively reduce the negative effect of such labels.

摘要

目的

为了训练深度学习模型在超声图像中区分良性和恶性乳腺肿瘤,我们需要收集许多带有明确标签的训练样本。通常情况下,活检结果可用作良性/恶性标签。然而,大多数临床样本通常没有活检结果。以前的工作已经提出了根据乳腺影像报告和数据系统(BI-RADS)评分生成良性/恶性标签的方法。但是,这种方法会导致噪声标签,这意味着从 BI-RADS 诊断生成的良性/恶性标签可能与实际情况不一致。因此,深度学习模型会过度拟合噪声标签,从而导致较差的泛化性能。在这项工作中,我们主要关注如何在使用带有噪声标签训练乳腺肿瘤分类模型时减少其负面影响。

方法

我们提出了一种名为噪声过滤网络(NF-Net)的有效方法来解决在训练乳腺肿瘤分类模型时带有噪声标签的问题。具体来说,为了防止深度学习模型过度拟合噪声标签,我们提出了使用两个用于分类的 softmax 层。此外,为了增强干净标签的效果,我们设计了一个师生模块用于提取干净标签的知识。

结果

我们对现有处理噪声标签的工作进行了广泛的比较。我们的方法在处理噪声标签方面的分类准确率为 73%,精度为 69%,召回率为 80%,F1 得分为 0.74。这一结果明显优于现有处理噪声标签的最先进工作。

结论

这项工作提供了一种克服训练乳腺肿瘤分类模型中标签短缺问题的方法。具体来说,我们可以根据 BI-RADS 评分生成良性/恶性标签。虽然这种方法会导致噪声标签,但 NF-Net 的设计可以有效地减少这些标签的负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验