Suppr超能文献

神经解剖结构对经颅磁刺激和间歇性经颅磁刺激期间及之后皮质运动兴奋性的影响。

Effect of neuroanatomy on corticomotor excitability during and after transcranial magnetic stimulation and intermittent theta burst stimulation.

机构信息

Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.

College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Hum Brain Mapp. 2022 Oct 1;43(14):4492-4507. doi: 10.1002/hbm.25968. Epub 2022 Jun 9.

Abstract

Individual neuroanatomy can influence motor responses to transcranial magnetic stimulation (TMS) and corticomotor excitability after intermittent theta burst stimulation (iTBS). The purpose of this study was to examine the relationship between individual neuroanatomy and both TMS response measured using resting motor threshold (RMT) and iTBS measured using motor evoked potentials (MEPs) targeting the biceps brachii and first dorsal interosseus (FDI). Ten nonimpaired individuals completed sham-controlled iTBS sessions and underwent MRI, from which anatomically accurate head models were generated. Neuroanatomical parameters established through fiber tractography were fiber tract surface area (FTSA), tract fiber count (TFC), and brain scalp distance (BSD) at the point of stimulation. Cortical magnetic field induced electric field strength (EFS) was obtained using finite element simulations. A linear mixed effects model was used to assess effects of these parameters on RMT and iTBS (post-iTBS MEPs). FDI RMT was dependent on interactions between EFS and both FTSA and TFC. Biceps RMT was dependent on interactions between EFS and and both FTSA and BSD. There was no groupwide effect of iTBS on the FDI but individual changes in corticomotor excitability scaled with RMT, EFS, BSD, and FTSA. iTBS targeting the biceps was facilitatory, and dependent on FTSA and TFC. MRI-based measures of neuroanatomy highlight how individual anatomy affects motor system responses to different TMS paradigms and may be useful for selecting appropriate motor targets when designing TMS based therapies.

摘要

个体神经解剖结构可能会影响经颅磁刺激(TMS)的运动反应和间歇 theta 爆发刺激(iTBS)后的皮质运动兴奋性。本研究的目的是研究个体神经解剖结构与 TMS 反应(使用静息运动阈值(RMT)测量)和 iTBS 反应(使用针对肱二头肌和第一背骨间肌(FDI)的运动诱发电位(MEPs)测量)之间的关系。10 名非受损个体完成了假刺激控制 iTBS 疗程,并进行了 MRI 检查,从中生成了解剖准确的头部模型。通过纤维束追踪确定的神经解剖学参数包括纤维束表面积(FTSA)、束纤维计数(TFC)和刺激点的脑头皮距离(BSD)。使用有限元模拟获得皮质磁场诱导电场强度(EFS)。线性混合效应模型用于评估这些参数对 RMT 和 iTBS(iTBS 后 MEPs)的影响。FDI 的 RMT 取决于 EFS 与 FTSA 和 TFC 之间的相互作用。肱二头肌的 RMT 取决于 EFS 与 FTSA 和 BSD 之间的相互作用。iTBS 对 FDI 没有全组效应,但皮质运动兴奋性的个体变化与 RMT、EFS、BSD 和 FTSA 成正比。针对肱二头肌的 iTBS 具有易化作用,并且取决于 FTSA 和 TFC。基于 MRI 的神经解剖学测量突出了个体解剖结构如何影响不同 TMS 范式对运动系统的反应,并且在设计基于 TMS 的治疗时可能有助于选择合适的运动靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ae/9435000/0a296d131f72/HBM-43-4492-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验