Suppr超能文献

NCGNN:用于半监督分类的节点级胶囊图神经网络

NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification.

作者信息

Yang Rui, Dai Wenrui, Li Chenglin, Zou Junni, Xiong Hongkai

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun 9;PP. doi: 10.1109/TNNLS.2022.3179306.

Abstract

Message passing has evolved as an effective tool for designing graph neural networks (GNNs). However, most existing methods for message passing simply sum or average all the neighboring features to update node representations. They are restricted by two problems: 1) lack of interpretability to identify node features significant to the prediction of GNNs and 2) feature overmixing that leads to the oversmoothing issue in capturing long-range dependencies and inability to handle graphs under heterophily or low homophily. In this article, we propose a node-level capsule graph neural network (NCGNN) to address these problems with an improved message passing scheme. Specifically, NCGNN represents nodes as groups of node-level capsules, in which each capsule extracts distinctive features of its corresponding node. For each node-level capsule, a novel dynamic routing procedure is developed to adaptively select appropriate capsules for aggregation from a subgraph identified by the designed graph filter. NCGNN aggregates only the advantageous capsules and restrains irrelevant messages to avoid overmixing features of interacting nodes. Therefore, it can relieve the oversmoothing issue and learn effective node representations over graphs with homophily or heterophily. Furthermore, our proposed message passing scheme is inherently interpretable and exempt from complex post hoc explanations, as the graph filter and the dynamic routing procedure identify a subset of node features that are most significant to the model prediction from the extracted subgraph. Extensive experiments on synthetic as well as real-world graphs demonstrate that NCGNN can well address the oversmoothing issue and produce better node representations for semisupervised node classification. It outperforms the state of the arts under both homophily and heterophily.

摘要

消息传递已发展成为设计图神经网络(GNN)的有效工具。然而,大多数现有的消息传递方法只是简单地对所有相邻特征求和或求平均来更新节点表示。它们受到两个问题的限制:1)缺乏可解释性,无法识别对GNN预测有重要意义的节点特征;2)特征过度混合,这会导致在捕获长程依赖时出现过度平滑问题,并且无法处理异质性或低同质性情况下的图。在本文中,我们提出了一种节点级胶囊图神经网络(NCGNN),通过改进的消息传递方案来解决这些问题。具体而言,NCGNN将节点表示为节点级胶囊组,其中每个胶囊提取其相应节点的独特特征。对于每个节点级胶囊,开发了一种新颖的动态路由过程,以从由设计的图滤波器识别出的子图中自适应地选择合适的胶囊进行聚合。NCGNN仅聚合有利的胶囊并抑制不相关的消息,以避免相互作用节点的特征过度混合。因此,它可以缓解过度平滑问题,并在具有同质性或异质性的图上学习有效的节点表示。此外,我们提出的消息传递方案本质上是可解释的,无需复杂的事后解释,因为图滤波器和动态路由过程从提取的子图中识别出对模型预测最重要的节点特征子集。在合成图和真实世界图上进行的大量实验表明,NCGNN可以很好地解决过度平滑问题,并为半监督节点分类生成更好的节点表示。在同质性和异质性条件下,它都优于现有技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验