Suppr超能文献

超越同质性和齐性假设:基于关系的频率自适应图神经网络

Beyond Homophily and Homogeneity Assumption: Relation-Based Frequency Adaptive Graph Neural Networks.

作者信息

Wu Lirong, Lin Haitao, Hu Bozhen, Tan Cheng, Gao Zhangyang, Liu Zicheng, Li Stan Z

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8497-8509. doi: 10.1109/TNNLS.2022.3230417. Epub 2024 Jun 3.

Abstract

Graph neural networks (GNNs) have been playing important roles in various graph-related tasks. However, most existing GNNs are based on the assumption of homophily, so they cannot be directly generalized to heterophily settings where connected nodes may have different features and class labels. Moreover, real-world graphs often arise from highly entangled latent factors, but the existing GNNs tend to ignore this and simply denote the heterogeneous relations between nodes as binary-valued homogeneous edges. In this article, we propose a novel relation-based frequency adaptive GNN (RFA-GNN) to handle both heterophily and heterogeneity in a unified framework. RFA-GNN first decomposes an input graph into multiple relation graphs, each representing a latent relation. More importantly, we provide detailed theoretical analysis from the perspective of spectral signal processing. Based on this, we propose a relation-based frequency adaptive mechanism that adaptively picks up signals of different frequencies in each corresponding relation space in the message-passing process. Extensive experiments on synthetic and real-world datasets show qualitatively and quantitatively that RFA-GNN yields truly encouraging results for both the heterophily and heterogeneity settings. Codes are publicly available at: https://github.com/LirongWu/RFA-GNN.

摘要

图神经网络(GNNs)在各种与图相关的任务中发挥着重要作用。然而,大多数现有的GNNs基于同质性假设,因此它们不能直接推广到异质性设置中,在这种设置下,相连的节点可能具有不同的特征和类别标签。此外,现实世界中的图通常源于高度纠缠的潜在因素,但现有的GNNs往往忽略这一点,只是将节点之间的异质关系简单地表示为二元值的同质边。在本文中,我们提出了一种新颖的基于关系的频率自适应GNN(RFA-GNN),以在统一框架中处理异质性和异构性。RFA-GNN首先将输入图分解为多个关系图,每个关系图代表一种潜在关系。更重要的是,我们从频谱信号处理的角度提供了详细的理论分析。基于此,我们提出了一种基于关系的频率自适应机制,该机制在消息传递过程中在每个相应的关系空间中自适应地提取不同频率的信号。在合成数据集和真实世界数据集上进行的大量实验从定性和定量两方面表明,RFA-GNN在异质性和异构性设置方面都产生了真正令人鼓舞的结果。代码可在以下网址公开获取:https://github.com/LirongWu/RFA-GNN

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验