Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA.
Biosens Bioelectron. 2022 Oct 1;213:114445. doi: 10.1016/j.bios.2022.114445. Epub 2022 Jun 1.
Despite its high potential, PD-L1 expressed by tumors has not been successfully utilized as a biomarker for estimating treatment responses to immunotherapy. Circulating tumor cells (CTCs) and tumor-derived exosomes that express PD-L1 can potentially be used as biomarkers; however, currently available assays lack clinically significant sensitivity and specificity. Here, a novel peptide-based capture surface is developed to effectively isolate PD-L1-expressing CTCs and exosomes from human blood. For the effective targeting of PD-L1, this study integrates peptide engineering strategies to enhance the binding strength and specificity of a β-hairpin peptide derived from PD-1 (pPD-1). Specifically, this study examines the effect of poly(ethylene glycol) spacers, the secondary peptide structure, and modification of peptide sequences (e.g., removal of biologically redundant amino acid residues) on capture efficiency. The optimized pPD-1 configuration captures PD-L1-expressing tumor cells and tumor-derived exosomes with 1.5-fold (p = 0.016) and 1.2-fold (p = 0.037) higher efficiencies, respectively, than their whole antibody counterpart (aPD-L1). This enhanced efficiency is translated into more clinically significant detection of CTCs (1.9-fold increase; p = 0.035) and exosomes (1.5-fold increase; p = 0.047) from patients' baseline samples, demonstrating stronger correlation with patients' treatment responses. Additionally, we confirmed that the clinical accuracy of our system can be further improved by co-analyzing the two biomarkers (bimodal CTC/exosome analysis). These data demonstrate that pPD-1-based capture is a promising approach for capturing PD-L1-expressing CTCs and exosomes, which can be used as a reliable biomarker for cancer immunotherapy.
尽管其潜力巨大,但肿瘤表达的 PD-L1 尚未成功用作评估免疫治疗反应的生物标志物。表达 PD-L1 的循环肿瘤细胞(CTC)和肿瘤衍生的外泌体可能被用作生物标志物;然而,目前可用的检测方法缺乏临床显著的敏感性和特异性。在这里,开发了一种新型基于肽的捕获表面,以有效分离人血液中的 PD-L1 表达的 CTC 和外泌体。为了有效靶向 PD-L1,本研究整合了肽工程策略,以增强源自 PD-1 的 β-发夹肽(pPD-1)的结合强度和特异性。具体来说,本研究研究了聚乙二醇(PEG)间隔物、二级肽结构和肽序列修饰(例如,去除生物冗余氨基酸残基)对捕获效率的影响。优化后的 pPD-1 构型以 1.5 倍(p=0.016)和 1.2 倍(p=0.037)的效率分别捕获表达 PD-L1 的肿瘤细胞和肿瘤衍生的外泌体,比其全抗体对应物(aPD-L1)更高。这种增强的效率转化为更具临床意义的 CTC(增加 1.9 倍;p=0.035)和外泌体(增加 1.5 倍;p=0.047)的检测,与患者的治疗反应相关性更强。此外,我们证实通过共同分析两种生物标志物(双模态 CTC/外泌体分析),可以进一步提高我们系统的临床准确性。这些数据表明,基于 pPD-1 的捕获是捕获表达 PD-L1 的 CTC 和外泌体的一种很有前途的方法,可作为癌症免疫治疗的可靠生物标志物。