Liu Xing, Chen Linjie, Peng Huan, Wang Guan, Belshaw Nicholas Stanley, Zheng Hongtao, Hu Shenghong, Zhu Zhenli
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, 430074, China.
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, 430074, China; Department of Earth Sciences, Oxford University, Oxford, OX1 3PR, UK.
Anal Chim Acta. 2022 Jul 4;1215:339980. doi: 10.1016/j.aca.2022.339980. Epub 2022 May 25.
Cd isotopes have provided a powerful tool for better understanding Cd geochemical cycling in soil, water and biological systems. Conventional solution-based MC-ICPMS techniques used for Cd isotopic analysis typically requires time-consuming purification, which greatly limits the wide application of Cd isotope. In this work, a fast, highly sensitive and cost-effective Cd isotopic analysis method has been developed based on plasma electrochemical vapor generation (PEVG) coupled with MC-ICPMS. PEVG enhances sensitivity by more than 6 times compared with conventional pneumatic nebulization (PN) system, allowing Cd analysis to be carried out with samples as low as ∼ 13 ng. Usefully, the tolerance level for organic resin materials and matrix elements (Sn/In/Pd/Zr/Mo/Zn:Cd > 250:1) is greatly improved because of the excellent matrix separation capability inherent to PEVG. This allows simplification of the complex and time-consuming ion-exchange chromatography purification process, achieving a reduction of time by > 20 times compared to conventional two-step Cd purification process. The precision and accuracy of this method were first assessed by measuring NIST 3108 and BGEG-Cd standard under optimum conditions (δCd of 0.00 ± 0.06‰ and -1.00 ± 0.06‰ (2sd, n = 25)). The method was also successfully applied to sensitive and fast determination of δCd in various reference materials (soil, sediment, and basalt) and environmental samples (pyrite, galena, sphalerite, soils and tap water), validating the applicability of the proposed technique. Owing to the sensitivity, selectivity, low power, and low gas consumption of the PEVG, the proposed PEVG-MC-ICPMS technique provides a much faster and cost-effective approach for the accurate measurement of Cd isotopic compositions in low-Cd complex samples.
镉同位素为更好地理解土壤、水和生物系统中的镉地球化学循环提供了一个强大的工具。用于镉同位素分析的传统基于溶液的MC-ICPMS技术通常需要耗时的纯化过程,这极大地限制了镉同位素的广泛应用。在这项工作中,基于等离子体电化学蒸气发生(PEVG)与MC-ICPMS联用,开发了一种快速、高灵敏度且经济高效的镉同位素分析方法。与传统的气动雾化(PN)系统相比,PEVG将灵敏度提高了6倍以上,使得能够使用低至约13 ng的样品进行镉分析。有用的是,由于PEVG固有的出色基体分离能力,有机树脂材料和基体元素的耐受水平(锡/铟/钯/锆/钼/锌:镉>250:1)大大提高。这使得复杂且耗时的离子交换色谱纯化过程得以简化,与传统的两步镉纯化过程相比,时间减少了20倍以上。该方法的精密度和准确度首先通过在最佳条件下测量NIST 3108和BGEG-Cd标准物质进行评估(δCd为0.00±0.06‰和-1.00±0.06‰(2sd,n = 25))。该方法还成功应用于各种标准物质(土壤、沉积物和玄武岩)和环境样品(黄铁矿、方铅矿、闪锌矿、土壤和自来水)中δCd的灵敏快速测定,验证了所提出技术的适用性。由于PEVG的灵敏度、选择性、低功率和低气体消耗,所提出的PEVG-MC-ICPMS技术为准确测量低镉复杂样品中的镉同位素组成提供了一种更快且经济高效的方法。