Ghosh Soumava, Bansal Radhika, Sun Greg, Soref Richard A, Cheng Hung-Hsiang, Chang Guo-En
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata 700009, India.
Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi County 62102, Taiwan.
Sensors (Basel). 2022 May 24;22(11):3978. doi: 10.3390/s22113978.
Silicon photonics is emerging as a competitive platform for electronic-photonic integrated circuits (EPICs) in the 2 µm wavelength band where GeSn photodetectors (PDs) have proven to be efficient PDs. In this paper, we present a comprehensive theoretical study of GeSn vertical homojunction waveguide photodetectors (WGPDs) that have a strain-free and defect-free GeSn active layer for 2 µm Si-based EPICs. The use of a narrow-gap GeSn alloy as the active layer can fully cover entire the 2 µm wavelength band. The waveguide structure allows for decoupling the photon-absorbing path and the carrier collection path, thereby allowing for the simultaneous achievement of high-responsivity and high-bandwidth (BW) operation at the 2 µm wavelength band. We present the theoretical models to calculate the carrier saturation velocities, optical absorption coefficient, responsivity, 3-dB bandwidth, zero-bias resistance, and detectivity, and optimize this device structure to achieve highest performance at the 2 µm wavelength band. The results indicate that the performance of the GeSn WGPD has a strong dependence on the Sn composition and geometric parameters. The optimally designed GeSn WGPD with a 10% Sn concentration can give responsivity of 1.55 A/W, detectivity of 6.12 × 10 cmHzW at 2 µm wavelength, and ~97 GHz BW. Therefore, this optimally designed GeSn WGPD is a potential candidate for silicon photonic EPICs offering high-speed optical communications.
硅光子学正在成为2微米波长波段电子 - 光子集成电路(EPIC)的一个具有竞争力的平台,在该波段锗锡光电探测器(PD)已被证明是高效的探测器。在本文中,我们对锗锡垂直同质结波导光电探测器(WGPD)进行了全面的理论研究,该探测器具有用于2微米硅基EPIC的无应变且无缺陷的锗锡有源层。使用窄带隙锗锡合金作为有源层可以完全覆盖整个2微米波长波段。波导结构允许将光子吸收路径和载流子收集路径解耦,从而能够在2微米波长波段同时实现高响应度和高带宽(BW)运行。我们提出了理论模型来计算载流子饱和速度、光吸收系数、响应度、3分贝带宽、零偏置电阻和探测率,并优化该器件结构以在2微米波长波段实现最高性能。结果表明,锗锡WGPD的性能强烈依赖于锡成分和几何参数。具有10%锡浓度的优化设计的锗锡WGPD在2微米波长处可给出1.55 A/W的响应度、6.12×10 cmHzW的探测率和约97 GHz的带宽。因此,这种优化设计的锗锡WGPD是用于提供高速光通信的硅光子EPIC的潜在候选者。