Suppr超能文献

光子学与电子学中的非厄米传感:综述

Non-Hermitian Sensing in Photonics and Electronics: A Review.

作者信息

De Carlo Martino, De Leonardis Francesco, Soref Richard A, Colatorti Luigi, Passaro Vittorio M N

机构信息

Photonics Research Group, Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy.

Department of Engineering, University of Massachusetts at Boston, Boston, MA 02125, USA.

出版信息

Sensors (Basel). 2022 May 24;22(11):3977. doi: 10.3390/s22113977.

Abstract

Recently, non-Hermitian Hamiltonians have gained a lot of interest, especially in optics and electronics. In particular, the existence of real eigenvalues of non-Hermitian systems has opened a wide set of possibilities, especially, but not only, for sensing applications, exploiting the physics of exceptional points. In particular, the square root dependence of the eigenvalue splitting on different design parameters, exhibited by 2 × 2 non-Hermitian Hamiltonian matrices at the exceptional point, paved the way to the integration of high-performance sensors. The square root dependence of the eigenfrequencies on the design parameters is the reason for a theoretically infinite sensitivity in the proximity of the exceptional point. Recently, higher-order exceptional points have demonstrated the possibility of achieving the th root dependence of the eigenfrequency splitting on perturbations. However, the exceptional sensitivity to external parameters is, at the same time, the major drawback of non-Hermitian configurations, leading to the high influence of noise. In this review, the basic principles of PT-symmetric and anti-PT-symmetric Hamiltonians will be shown, both in photonics and in electronics. The influence of noise on non-Hermitian configurations will be investigated and the newest solutions to overcome these problems will be illustrated. Finally, an overview of the newest outstanding results in sensing applications of non-Hermitian photonics and electronics will be provided.

摘要

最近,非厄米哈密顿量引起了广泛关注,尤其是在光学和电子学领域。特别地,非厄米系统实本征值的存在开启了一系列广泛的可能性,尤其是但不限于传感应用,这利用了奇异点的物理特性。具体而言,在奇异点处由2×2非厄米哈密顿矩阵表现出的本征值分裂对不同设计参数的平方根依赖性,为高性能传感器的集成铺平了道路。本征频率对设计参数的平方根依赖性是在奇异点附近理论上具有无限灵敏度的原因。最近,高阶奇异点已经证明了实现本征频率分裂对微扰的n次方根依赖性的可能性。然而,对外部参数的异常敏感性同时也是非厄米配置的主要缺点,导致噪声的影响很大。在这篇综述中,将展示光子学和电子学中PT对称和反PT对称哈密顿量的基本原理。将研究噪声对非厄米配置的影响,并说明克服这些问题的最新解决方案。最后,将提供非厄米光子学和电子学传感应用中最新杰出成果的概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c7/9182944/8ed162f1ebc2/sensors-22-03977-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验