The College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
The College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China.
Sensors (Basel). 2022 May 27;22(11):4088. doi: 10.3390/s22114088.
This paper investigates the computation offloading problem in mobile edge computing (MEC) networks with dynamic weighted tasks. We aim to minimize the system utility of the MEC network by jointly optimizing the offloading decision and bandwidth allocation problems. The optimization of joint offloading decisions and bandwidth allocation is formulated as a mixed-integer programming (MIP) problem. In general, the problem can be efficiently generated by deep learning-based algorithms for offloading decisions and then solved by using traditional optimization methods. However, these methods are weakly adaptive to new environments and require a large number of training samples to retrain the deep learning model once the environment changes. To overcome this weakness, in this paper, we propose a deep supervised learning-based computational offloading (DSLO) algorithm for dynamic computational tasks in MEC networks. We further introduce batch normalization to speed up the model convergence process and improve the robustness of the model. Numerical results show that DSLO only requires a few training samples and can quickly adapt to new MEC scenarios. Specifically, it can achieve 99% normalized system utility by using only four training samples per MEC scenario. Therefore, DSLO enables the fast deployment of computation offloading algorithms in future MEC networks.
本文研究了具有动态加权任务的移动边缘计算 (MEC) 网络中的计算卸载问题。我们旨在通过联合优化卸载决策和带宽分配问题来最小化 MEC 网络的系统效用。联合卸载决策和带宽分配的优化被表述为混合整数规划 (MIP) 问题。一般来说,这个问题可以通过基于深度学习的算法来高效地生成,然后使用传统的优化方法来解决。然而,这些方法对新环境的适应性较弱,并且需要大量的训练样本来重新训练深度学习模型,一旦环境发生变化。为了克服这一弱点,在本文中,我们提出了一种基于深度监督学习的计算卸载 (DSLO) 算法,用于 MEC 网络中的动态计算任务。我们进一步引入批量归一化来加速模型的收敛过程并提高模型的鲁棒性。数值结果表明,DSLO 仅需要少量的训练样本,并且可以快速适应新的 MEC 场景。具体来说,它可以通过每个 MEC 场景仅使用四个训练样本来实现 99%的归一化系统效用。因此,DSLO 可以在未来的 MEC 网络中快速部署计算卸载算法。