Suppr超能文献

支持物联网的智能家居系统动态卸载中的混合计算框架安全

Hybrid computing framework security in dynamic offloading for IoT-enabled smart home system.

作者信息

Khan Sheharyar, Jiangbin Zheng, Ullah Farhan, Pervez Akhter Muhammad, Khan Sohrab, Awwad Fuad A, Ismail Emad A A

机构信息

School of Software, Northwestern Polytechnical University, Xi'an, China.

Department of Computer Science, National University of Modern Languages, Faisalabad, Pakistan.

出版信息

PeerJ Comput Sci. 2024 Aug 23;10:e2211. doi: 10.7717/peerj-cs.2211. eCollection 2024.

Abstract

In the distributed computing era, cloud computing has completely changed organizational operations by facilitating simple access to resources. However, the rapid development of the IoT has led to collaborative computing, which raises scalability and security challenges. To fully realize the potential of the Internet of Things (IoT) in smart home technologies, there is still a need for strong data security solutions, which are essential in dynamic offloading in conjunction with edge, fog, and cloud computing. This research on smart home challenges covers in-depth examinations of data security, privacy, processing speed, storage capacity restrictions, and analytics inside networked IoT devices. We introduce the Trusted IoT Big Data Analytics (TIBDA) framework as a comprehensive solution to reshape smart living. Our primary focus is mitigating pervasive data security and privacy issues. TIBDA incorporates robust trust mechanisms, prioritizing data privacy and reliability for secure processing and user information confidentiality within the smart home environment. We achieve this by employing a hybrid cryptosystem that combines Elliptic Curve Cryptography (ECC), Post Quantum Cryptography (PQC), and Blockchain technology (BCT) to protect user privacy and confidentiality. Additionally, we comprehensively compared four prominent Artificial Intelligence anomaly detection algorithms (Isolation Forest, Local Outlier Factor, One-Class SVM, and Elliptic Envelope). We utilized machine learning classification algorithms (random forest, k-nearest neighbors, support vector machines, linear discriminant analysis, and quadratic discriminant analysis) for detecting malicious and non-malicious activities in smart home systems. Furthermore, the main part of the research is with the help of an artificial neural network (ANN) dynamic algorithm; the TIBDA framework designs a hybrid computing system that integrates edge, fog, and cloud architecture and efficiently supports numerous users while processing data from IoT devices in real-time. The analysis shows that TIBDA outperforms these systems significantly across various metrics. In terms of response time, TIBDA demonstrated a reduction of 10-20% compared to the other systems under varying user loads, device counts, and transaction volumes. Regarding security, TIBDA's AUC values were consistently higher by 5-15%, indicating superior protection against threats. Additionally, TIBDA exhibited the highest trustworthiness with an uptime percentage 10-12% greater than its competitors. TIBDA's Isolation Forest algorithm achieved an accuracy of 99.30%, and the random forest algorithm achieved an accuracy of 94.70%, outperforming other methods by 8-11%. Furthermore, our ANN-based offloading decision-making model achieved a validation accuracy of 99% and reduced loss to 0.11, demonstrating significant improvements in resource utilization and system performance.

摘要

在分布式计算时代,云计算通过促进对资源的简单访问,彻底改变了组织运营。然而,物联网的快速发展催生了协同计算,这带来了可扩展性和安全性挑战。为了充分发挥物联网在智能家居技术中的潜力,仍然需要强大的数据安全解决方案,这在与边缘、雾和云计算相结合的动态卸载中至关重要。这项关于智能家居挑战的研究深入探讨了联网物联网设备中的数据安全、隐私、处理速度、存储容量限制和分析。我们引入了可信物联网大数据分析(TIBDA)框架,作为重塑智能生活的综合解决方案。我们的主要重点是缓解普遍存在的数据安全和隐私问题。TIBDA纳入了强大的信任机制,将数据隐私和可靠性置于首位,以确保智能家居环境中的安全处理和用户信息保密。我们通过采用一种混合加密系统来实现这一目标,该系统结合了椭圆曲线密码学(ECC)、后量子密码学(PQC)和区块链技术(BCT)来保护用户隐私和机密性。此外,我们全面比较了四种著名的人工智能异常检测算法(孤立森林、局部离群因子、单类支持向量机和椭圆包络)。我们利用机器学习分类算法(随机森林、k近邻、支持向量机、线性判别分析和二次判别分析)来检测智能家居系统中的恶意和非恶意活动。此外,研究的主要部分借助人工神经网络(ANN)动态算法;TIBDA框架设计了一个集成边缘、雾和云架构的混合计算系统,在实时处理来自物联网设备的数据时,能有效支持众多用户。分析表明,TIBDA在各项指标上均显著优于这些系统。在响应时间方面,在不同的用户负载、设备数量和交易量下,TIBDA与其他系统相比响应时间减少了10 - 20%。在安全性方面,TIBDA的AUC值始终高出5 - 15%,表明其对威胁的防护能力更强。此外,TIBDA的正常运行时间百分比比竞争对手高出10 - 12%,具有最高的可信度。TIBDA的孤立森林算法准确率达到99.30%,随机森林算法准确率达到94.70%,比其他方法高出8 - 11%。此外,我们基于人工神经网络的卸载决策模型验证准确率达到99%,损失降低到0.1 的1,在资源利用率和系统性能方面有显著提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0f9/11419611/7a62ace8a994/peerj-cs-10-2211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验