Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India.
Sensors (Basel). 2022 May 29;22(11):4133. doi: 10.3390/s22114133.
The combination of edge computing and deep learning helps make intelligent edge devices that can make several conditional decisions using comparatively secured and fast machine learning algorithms. An automated car that acts as the data-source node of an intelligent Internet of vehicles or IoV system is one of these examples. Our motivation is to obtain more accurate and rapid object detection using the intelligent cameras of a smart car. The competent supervision camera of the smart automobile model utilizes multimedia data for real-time automation in real-time threat detection. The corresponding comprehensive network combines cooperative multimedia data processing, Internet of Things (IoT) fact handling, validation, computation, precise detection, and decision making. These actions confront real-time delays during data offloading to the cloud and synchronizing with the other nodes. The proposed model follows a cooperative machine learning technique, distributes the computational load by slicing real-time object data among analogous intelligent Internet of Things nodes, and parallel vision processing between connective edge clusters. As a result, the system increases the computational rate and improves accuracy through responsible resource utilization and active-passive learning. We achieved low latency and higher accuracy for object identification through real-time multimedia data objectification.
边缘计算和深度学习的结合有助于构建智能边缘设备,这些设备可以使用相对安全和快速的机器学习算法做出多个条件决策。自动驾驶汽车就是其中的一个例子,它可以作为智能车联网(IoV)系统的数据源节点。我们的动机是利用智能汽车的智能摄像头获得更准确、快速的目标检测。智能汽车模型的有能力的监督摄像头利用多媒体数据进行实时自动化实时威胁检测。相应的综合网络结合了协作多媒体数据处理、物联网(IoT)事实处理、验证、计算、精确检测和决策。在将数据卸载到云端并与其他节点同步时,这些操作会面临实时延迟。所提出的模型采用协作机器学习技术,通过在类似的智能物联网节点之间分配实时对象数据的计算负载,以及在连接的边缘集群之间进行并行视觉处理,从而分担计算负担。因此,该系统通过负责任的资源利用和主动-被动学习提高了计算速度和准确性。通过实时多媒体数据对象化,我们实现了低延迟和更高的对象识别精度。