Suppr超能文献

持续监测的智能家居中的多人活动识别

Multi-Person Activity Recognition in Continuously Monitored Smart Homes.

作者信息

Wang Tinghui, Cook Diane J

机构信息

Amazon, Seattle, WA 98121.

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164.

出版信息

IEEE Trans Emerg Top Comput. 2022 Apr-Jun;10(2):1130-1141. doi: 10.1109/tetc.2021.3072980. Epub 2021 Apr 15.

Abstract

Activity recognizers are challenging to design for continuous, in-home settings. However, they are notoriously difficult to create when there is more than one resident in the home. Despite recent efforts, there remains a need for an algorithm that can estimate the number of residents in the house, split a time series stream into separate substreams, and accurately identify each resident's activities. To address this challenge, we introduce Gamut. This novel unsupervised method jointly estimates the number of residents and associates sensor readings with those residents, based on a multi-target Gaussian mixture probability hypothesis density filter. We hypothesize that the proposed method will offer robust recognition for homes with two or more residents. In experiments with labeled data collected from 50 single-resident and 11 multi-resident homes, we observe that Gamut outperforms previous unsupervised and supervised methods, offering a robust strategy to track behavioral routines in complex settings.

摘要

活动识别器对于连续的家庭环境来说设计颇具挑战性。然而,当家中有不止一位居住者时,创建活动识别器更是出了名的困难。尽管最近人们付出了努力,但仍需要一种算法,它能够估计房屋内居住者的数量,将时间序列流拆分为单独的子流,并准确识别每个居住者的活动。为应对这一挑战,我们引入了Gamut。这种新颖的无监督方法基于多目标高斯混合概率假设密度滤波器,联合估计居住者数量并将传感器读数与这些居住者关联起来。我们假设所提出的方法将为有两名或更多居住者的家庭提供强大的识别能力。在对从50个单居住者家庭和11个多居住者家庭收集的标记数据进行的实验中,我们观察到Gamut优于先前的无监督和有监督方法,为在复杂环境中跟踪行为习惯提供了一种强大的策略。

相似文献

1
Multi-Person Activity Recognition in Continuously Monitored Smart Homes.持续监测的智能家居中的多人活动识别
IEEE Trans Emerg Top Comput. 2022 Apr-Jun;10(2):1130-1141. doi: 10.1109/tetc.2021.3072980. Epub 2021 Apr 15.
2
sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization.sMRT:利用传感器向量化进行智能家居中的多居民跟踪。
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2809-2821. doi: 10.1109/TPAMI.2020.2973571. Epub 2021 Jul 1.
5
Unsupervised daily routine and activity discovery in smart homes.智能家居中无监督的日常活动发现
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5497-500. doi: 10.1109/EMBC.2015.7319636.

本文引用的文献

3
sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization.sMRT:利用传感器向量化进行智能家居中的多居民跟踪。
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2809-2821. doi: 10.1109/TPAMI.2020.2973571. Epub 2021 Jul 1.
4
Timely daily activity recognition from headmost sensor events.及时从头部传感器事件进行日常活动识别。
ISA Trans. 2019 Nov;94:379-390. doi: 10.1016/j.isatra.2019.04.026. Epub 2019 May 4.
5
Collegial Activity Learning between Heterogeneous Sensors.异构传感器之间的合作活动学习
Knowl Inf Syst. 2017 Nov;53(2):337-364. doi: 10.1007/s10115-017-1043-3. Epub 2017 Mar 27.
8
Activity Recognition on Streaming Sensor Data.流传感器数据的活动识别
Pervasive Mob Comput. 2014 Feb 1;10(Pt B):138-154. doi: 10.1016/j.pmcj.2012.07.003.
9
CASAS: A Smart Home in a Box.卡萨斯:一个集成式智能家居。
Computer (Long Beach Calif). 2013 Jul;46(7). doi: 10.1109/MC.2012.328.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验