Suppr超能文献

sMRT:利用传感器向量化进行智能家居中的多居民跟踪。

sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2809-2821. doi: 10.1109/TPAMI.2020.2973571. Epub 2021 Jul 1.

Abstract

Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.

摘要

智能家居配备匿名二进制传感器提供了一种低成本、不引人注目的解决方案,为活动感知应用提供支持,例如建筑自动化、健康监测、行为干预和家庭安全。然而,当多个居民居住在智能家居中时,将传感器事件与相应的居民相关联可能会带来重大挑战。以前在智能家居中进行多居民跟踪的方法依赖于额外的信息,例如传感器布局、平面图和注释数据,这些信息在实际中可能不可用或不方便获取。为了解决现实生活部署中的这些挑战,我们引入了 sMRT 算法,该算法无需依赖真实标记的传感器数据或其他额外信息,即可同时跟踪每个居民的位置并估计智能家居中的居民数量。我们使用在真实环境中记录的两个智能家居数据集来评估我们方法的性能,并将 sMRT 与另外两种依赖传感器布局和真实标记传感器数据的方法进行比较。

相似文献

1
sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization.sMRT:利用传感器向量化进行智能家居中的多居民跟踪。
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2809-2821. doi: 10.1109/TPAMI.2020.2973571. Epub 2021 Jul 1.
6
Sensor technology for smart homes.智能家居传感器技术。
Maturitas. 2011 Jun;69(2):131-6. doi: 10.1016/j.maturitas.2011.03.016. Epub 2011 May 4.
8
Sound and speech detection and classification in a Health Smart Home.健康智能家居中的声音与语音检测及分类
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4644-7. doi: 10.1109/IEMBS.2008.4650248.
9
Assessing the quality of activities in a smart environment.评估智能环境中活动的质量。
Methods Inf Med. 2009;48(5):480-5. doi: 10.3414/ME0592. Epub 2009 May 15.
10
Simulation of Smart Home Activity Datasets.智能家居活动数据集的模拟
Sensors (Basel). 2015 Jun 16;15(6):14162-79. doi: 10.3390/s150614162.

引用本文的文献

5
Multi-Person Activity Recognition in Continuously Monitored Smart Homes.持续监测的智能家居中的多人活动识别
IEEE Trans Emerg Top Comput. 2022 Apr-Jun;10(2):1130-1141. doi: 10.1109/tetc.2021.3072980. Epub 2021 Apr 15.

本文引用的文献

3
Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications.从传感器数据中学习活动预测器:算法、评估及应用
IEEE Trans Knowl Data Eng. 2017 Dec 1;29(12):2744-2757. doi: 10.1109/TKDE.2017.2750669. Epub 2017 Sep 11.
8
Understanding Collective Activities of People from Videos.理解视频中人们的集体活动。
IEEE Trans Pattern Anal Mach Intell. 2014 Jun;36(6):1242-57. doi: 10.1109/TPAMI.2013.220.
10
Activity Recognition on Streaming Sensor Data.流传感器数据的活动识别
Pervasive Mob Comput. 2014 Feb 1;10(Pt B):138-154. doi: 10.1016/j.pmcj.2012.07.003.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验