Benner Florian, Demir Selvan
Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
Chem Sci. 2022 Apr 14;13(20):5818-5829. doi: 10.1039/d1sc07245e. eCollection 2022 May 25.
The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic Y ( = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution. This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp*Y)(μ-Bbim˙)] is provided. Access of Bbim˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim (1) and Bbim˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vis spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim˙ ligand was revealed temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim˙ an ideal candidate for single-molecule magnet design.
由于未成对电子产生的高反应性,发现单一有机自由基配体是一项艰巨的挑战。将自由基配体与金属离子匹配以产生磁耦合对于引发卓越的物理性质(如导电性和磁性)至关重要,而这些性质对于未来技术至关重要。金属-自由基方法对于具有深埋4f轨道的镧系离子尤为重要。自由基必须在供体原子上具有高自旋密度以促进强耦合。将抗磁性的Y(自旋 = 1/2)与有机自由基结合,可以深入了解电子结构和自旋密度分布。这种方法迄今未得到充分利用,可能是由于此类分子的合成和纯化具有挑战性。本文提供了前所未有的双苯并咪唑自由基阴离子(Bbim˙)及其以钇配合物形式存在的金属化产物[K(crypt-222)][(Cp*Y)(μ-Bbim˙)]的证据。通过与路易斯酸性金属离子的双配位以及随后的单电子还原,可以获得Bbim˙,这一点很显著,因为Bbim在闭壳配合物中被明确认为是氧化还原惰性的。分别对两个含有Bbim(1)和Bbim˙(2)的分子进行了X射线晶体学、核磁共振和紫外/可见光谱的全面研究。电化学研究揭示了一种准可逆特征,并强调了金属中心对Bbim氧化还原活性的作用,因为游离配体和Bbim配合物都没有导致类似的循环伏安结果。令人兴奋的是,通过变温电子顺磁共振光谱揭示了电子密度通过Bbim˙配体的强烈离域,并通过密度泛函理论计算和磁力测定得到证实,这使得Bbim˙成为单分子磁体设计的理想候选物。