Benner Florian, La Droitte Léo, Cador Olivier, Le Guennic Boris, Demir Selvan
Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France.
Chem Sci. 2023 May 3;14(21):5577-5592. doi: 10.1039/d3sc01562a. eCollection 2023 May 31.
A judicious combination of radical ligands innate to diffuse spin orbitals with paramagnetic metal ions elicits strong magnetic exchange coupling which leads to properties important for future technologies. This metal-radical approach aids in effective magnetic communication of especially lanthanide ions as their 4f orbitals are contracted and not readily accessible. Notably, a high spin density on the donor atoms of the radical is required for strong coupling. Such molecules are extremely rare owing to high reactivity rendering their isolation challenging. Herein, we present two unprecedented series of bisbenzimidazole-based dilanthanide complexes [(CpLn)(-Bbim)] (1-Ln = Gd, Tb, Dy, Bbim = 2,2'-bisbenzimidazole) and [K(crypt-222)][(CpLn)(μ-Bbim˙)] -(2-Ln = Gd, Tb, Dy), where the latter contains the first Bbim˙ radical matched with any paramagnetic metal ion. The magnetic exchange constant for 2-Gd of = -1.96(2) cm suggests strong antiferromagnetic Gd-radical coupling, whereas the lanthanides in 1-Gd are essentially uncoupled. calculations on 2-Tb and 2-Dy uncovered coupling strengths of -4.8 and -1.8 cm. 1-Dy features open hysteresis loops with a coercive field of of 0.11 T where the single-molecule magnetism can be attributed to the single-ion effect due to lack of coupling. Excitingly, pairing the effective magnetic coupling with the strong magnetic anisotropy of Dy results in magnetic hysteresis with a blocking temperature of 5.5 K and coercive field of 0.54 T, ranking 2-Dy as the second best dinuclear single-molecule magnet containing an organic radical bridge. A Bbim species is formed electrochemically hinting at the accessibility of Bbim-based redox-active materials.
将扩散自旋轨道固有的自由基配体与顺磁性金属离子进行明智组合,会引发强烈的磁交换耦合,这会产生对未来技术很重要的特性。这种金属 - 自由基方法有助于特别是镧系离子的有效磁通信,因为它们的4f轨道收缩且不易接近。值得注意的是,自由基供体原子上的高自旋密度是强耦合所必需的。由于高反应性使得它们的分离具有挑战性,这类分子极其罕见。在此,我们展示了两个前所未有的基于双苯并咪唑的二镧系配合物系列[(CpLn)(μ - Bbim)] (1 - Ln = Gd、Tb、Dy,Bbim = 2,2'-双苯并咪唑) 和 [K(crypt - 222)][(CpLn)(μ - Bbim˙)] (2 - Ln = Gd、Tb、Dy),其中后者包含第一个与任何顺磁性金属离子匹配的Bbim˙自由基。2 - Gd的磁交换常数J = -1.96(2) cm⁻¹表明存在强反铁磁性Gd - 自由基耦合,而1 - Gd中的镧系元素基本未耦合。对2 - Tb和2 - Dy的计算揭示了耦合强度分别为 -4.8 和 -1.8 cm⁻¹。1 - Dy具有开放的磁滞回线,矫顽场μ₀Hc为0.11 T,其中单分子磁性可归因于由于缺乏耦合导致的单离子效应。令人兴奋的是,将有效的磁耦合与Dy的强磁各向异性相结合,产生了磁滞现象,其阻塞温度Tb为5.5 K,矫顽场μ₀Hc为0.54 T,使2 - Dy成为含有机自由基桥的第二好的双核单分子磁体。通过电化学方法形成了一种Bbim物种,这暗示了基于Bbim的氧化还原活性材料的可及性。