Gehrels Emily W, Rogers W Benjamin, Zeravcic Zorana, Manoharan Vinothan N
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States.
ACS Nano. 2022 Jun 28;16(6):9195-9202. doi: 10.1021/acsnano.2c01454. Epub 2022 Jun 10.
Colloidal particles can be programmed to interact in complex ways by functionalizing them with DNA oligonucleotides. Adding DNA strand-displacement reactions to the system allows these interparticle interactions to respond to specific changes in temperature. We present the requirements for thermally driven directed motion of colloidal particles, and we explore how these conditions can be realized experimentally using strand-displacement reactions. To evaluate the concept, we build and test a colloidal "dancer": a single particle that can be driven to move through a programmed sequence of steps along a one-dimensional track composed of other particles. The results of these tests reveal the capabilities and limitations of using DNA-mediated interactions for applications in dynamic systems. Specifically, we discuss how to design the substrate to limit complexity while permitting full control of the motile component, how to ratchet the interactions to move over many substrate positions with a limited regime of control parameters, and how to use technological developments to reduce the probability of detachment without sacrificing speed.
通过用DNA寡核苷酸对胶体颗粒进行功能化处理,可以使其以复杂的方式进行相互作用。在系统中加入DNA链置换反应,可使这些颗粒间的相互作用对温度的特定变化做出响应。我们提出了胶体颗粒热驱动定向运动的要求,并探讨了如何通过链置换反应在实验中实现这些条件。为了评估这一概念,我们构建并测试了一个胶体“舞者”:一个单个颗粒,它可以沿着由其他颗粒组成的一维轨道,按照编程的步骤序列被驱动移动。这些测试结果揭示了在动态系统中使用DNA介导的相互作用的能力和局限性。具体而言,我们讨论了如何设计底物以限制复杂性,同时允许对运动组件进行完全控制;如何通过棘轮效应使相互作用在有限的控制参数范围内跨越多个底物位置移动;以及如何利用技术发展在不牺牲速度的情况下降低脱离的概率。