Suppr超能文献

跳跃和爬行的 DNA 包裹胶体颗粒。

Hopping and crawling DNA-coated colloids.

机构信息

Department of Physics, New York University, New York, NY 10003.

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2318865121. doi: 10.1073/pnas.2318865121. Epub 2024 Oct 1.

Abstract

Understanding the motion of particles with multivalent ligand-receptors is important for biomedical applications and material design. Yet, even among a single design, the prototypical DNA-coated colloids, seemingly similar micrometric particles hop or roll, depending on the study. We shed light on this problem by observing DNA-coated colloids diffusing near surfaces coated with complementary strands for a wide array of coating designs. We find colloids rapidly switch between 2 modes: They hop-with long and fast steps-and crawl-with short and slow steps. Both modes occur at all temperatures around the melting point and over various designs. The particles become increasingly subdiffusive as temperature decreases, in line with subsequent velocity steps becoming increasingly anticorrelated, corresponding to switchbacks in the trajectories. Overall, crawling (or hopping) phases are more predominant at low (or high) temperatures; crawling is also more efficient at low temperatures than hopping to cover large distances. We rationalize this behavior within a simple model: At lower temperatures, the number of bound strands increases, and detachment of all bonds is unlikely, hence, hopping is prevented and crawling favored. We thus reveal the mechanism behind a common design rule relying on increased strand density for long-range self-assembly: Dense strands on surfaces are required to enable crawling, possibly facilitating particle rearrangements.

摘要

理解具有多价配体受体的粒子的运动对于生物医学应用和材料设计非常重要。然而,即使在单一设计中,原型 DNA 包覆胶体,看似相似的微米级粒子,也会根据研究而跳跃或滚动。通过观察 DNA 包覆胶体在涂有互补链的表面附近扩散,我们解决了这个问题,该表面的涂覆设计多种多样。我们发现胶体在 2 种模式之间快速切换:它们跳跃-具有长而快的步骤-爬行-具有短而慢的步骤。在接近熔点的所有温度下以及在各种设计中,这两种模式都存在。随着温度的降低,粒子的亚扩散性越来越强,这与随后的速度步骤变得越来越负相关相对应,这对应于轨迹中的折返。总的来说,在低温下(或高温下),爬行(或跳跃)相更为主要;爬行在低温下比跳跃覆盖长距离更有效率。我们在一个简单的模型中解释了这种行为:在较低的温度下,结合链的数量增加,并且所有键的脱离都不太可能,因此,跳跃被阻止,爬行被优先考虑。因此,我们揭示了一种常见设计规则背后的机制,该规则依赖于增加表面上的链密度以实现长程自组装:表面上的密集链是进行爬行的必要条件,可能有助于粒子重排。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbe/11474044/ba6b3a613463/pnas.2318865121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验