Suppr超能文献

用于预测急诊科频繁就诊的机器学习方法的比较分析

Comparative analysis of machine learning approaches for predicting frequent emergency department visits.

作者信息

Safaripour Razieh, June Lim Hyun Ja

机构信息

Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

出版信息

Health Informatics J. 2022 Apr-Jun;28(2):14604582221106396. doi: 10.1177/14604582221106396.

Abstract

BACKGROUND

Emergency Department (ED) overcrowding is an emerging risk to patient safety. This study aims to assess and compare the predictive ability of machine learning (ML) models for predicting frequent ED users.

METHOD

Korean Health Panel data from 2008 to 2015 were used for this study. Individuals with four or more visits per year were considered frequent ED users. Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM) as well as two ensemble models, namely Bagging and Voting, were trained and tested to examine their predictive performance.

RESULTS

The ML classification algorithms identified frequent ED users with high precision (90%-98%) and sensitivity (87%-91%), whereas LR showed fair precision (65%) and sensitivity (67%). The ML algorithms showed a high area under the curve (AUC) values from 89% for SVM to 96% for Random Forest, while LR showed the lowest AUC (65%). The classification error varied among algorithms; LR had the highest classification error (24.07%) while RF had the least (3.8%).

CONCLUSIONS

Results show that ML classification algorithms are robust techniques to predict frequent ED users, and the variables in administrative health panels are reliable indicators for this purpose.

摘要

背景

急诊科过度拥挤是对患者安全新出现的风险。本研究旨在评估和比较机器学习(ML)模型预测急诊科频繁使用者的能力。

方法

本研究使用了2008年至2015年的韩国健康面板数据。每年就诊四次或更多次的个体被视为急诊科频繁使用者。对逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)以及两种集成模型(即装袋法和投票法)进行了训练和测试,以检验它们的预测性能。

结果

ML分类算法识别急诊科频繁使用者的精度较高(90%-98%),敏感度较高(87%-91%),而LR的精度一般(65%),敏感度一般(67%)。ML算法的曲线下面积(AUC)值较高,从支持向量机的89%到随机森林的96%,而LR的AUC最低(65%)。各算法的分类误差有所不同;LR的分类误差最高(24.07%),而随机森林的分类误差最小(3.8%)。

结论

结果表明,ML分类算法是预测急诊科频繁使用者的可靠技术,行政健康面板中的变量是用于此目的的可靠指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验