Zeng Peiyu, Wang Wenhui, Han Dongshuang, Zhang Jundong, Yu Zhihao, He Jiaoyan, Zheng Peng, Zheng Hui, Zheng Liang, Su Weitao, Huo Dexuan, Ni Zhenhua, Zhang Yang, Wu Zhangting
Lab for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China.
School of Physics, Southeast University, Nanjing 211189, China.
ACS Nano. 2022 Jun 28;16(6):9329-9338. doi: 10.1021/acsnano.2c02012. Epub 2022 Jun 10.
van der Waals heterostructures (vdWHs) overcoming the lattice and processing limitations of conventional heterostructures provide an opportunity to develop high-performance 2D vdWH solar cells and photodiodes. However, it is challenging to improve the sensitivity and response speed of 2D vdWH photovoltaic devices due to the low light absorption efficiency and electron/hole traps in heterointerfaces. Here, we design a PbS/MoS/WSe heterostructure photodiode in which a light-sensitive PbS quantum dot (QD) layer combined with a MoS/WSe heterostructure significantly enhances the photovoltaic response. The electron current in the heterostructure is increased by the effective collection of photogenerated electrons induced by PbS QDs. The device exhibits a broadband photovoltaic response from 405 to 1064 nm with a maximum responsivity of 0.76 A/W and a specific detectivity of 5.15 × 10 Jones. In particular, the response speed is not limited by multiple electron traps in the PbS QDs/2D material heterointerface, and a fast rising/decaying time of 43/48 μs and a -3 dB cutoff frequency of over 10 kHz are achieved. The negative differential capacitance and frequency dependence of capacitance demonstrate the presence of interface states in the MoS/WSe heterointerface that hamper the improvement of the response speed. The scheme to enhance photovoltaic performance without sacrificing response speed provides opportunities for the development of high-performance 2D vdWH optoelectronic devices.
范德华异质结构(vdWHs)克服了传统异质结构的晶格和加工限制,为开发高性能二维vdWH太阳能电池和光电二极管提供了契机。然而,由于光吸收效率低以及异质界面中的电子/空穴陷阱,提高二维vdWH光电器件的灵敏度和响应速度具有挑战性。在此,我们设计了一种PbS/MoS/WSe异质结构光电二极管,其中光敏的PbS量子点(QD)层与MoS/WSe异质结构相结合,显著增强了光伏响应。PbS量子点诱导产生的光生电子的有效收集增加了异质结构中的电子电流。该器件在405至1064 nm范围内呈现宽带光伏响应,最大响应度为0.76 A/W,比探测率为5.15×10琼斯。特别是,响应速度不受PbS量子点/二维材料异质界面中多个电子陷阱的限制,实现了43/48 μs的快速上升/衰减时间和超过10 kHz的-3 dB截止频率。负微分电容和电容的频率依赖性表明MoS/WSe异质界面中存在界面态,这阻碍了响应速度的提高。在不牺牲响应速度的情况下提高光伏性能的方案为高性能二维vdWH光电器件的发展提供了机遇。