Suppr超能文献

高效计算水溶液中糖的核磁共振氢和碳化学位移。

Efficiently Computing NMR H and C Chemical Shifts of Saccharides in Aqueous Environment.

机构信息

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, Prague 6 CZ166 10, Czech Republic.

出版信息

J Chem Theory Comput. 2022 Jul 12;18(7):4373-4386. doi: 10.1021/acs.jctc.2c00127. Epub 2022 Jun 10.

Abstract

Determining the structure of saccharides in their native environment is crucial to understanding their function and more accurately targeting their utilization. Nuclear magnetic resonance observables such as the nuclear Overhauser effect or spin-spin coupling constants are routinely utilized to study saccharides in their native water environment. However, while highly sensitive to the local environment, chemical shifts are mostly overlooked, despite being commonly measured for compounds identification. Although chemical shifts carry considerable structural information, their direct association with structure is notoriously difficult. This is mostly due to the similarity in the chemical nature of most saccharides causing similar physicochemical environments close to sugar C and H atoms, resulting in comparable chemical shifts. The rise of computational power allows one to compute reliable chemical shifts and use them to determine atomistic details of these sugars in solution. However, any prediction is severely limited by the computational protocol used and its accuracy. In this work, we studied a set of 31 saccharides on which we evaluated various computational protocols to calculate the total number of 375 H and 327 C chemical shifts of sugars in an aqueous environment. Our study proposes two cost-effective protocols for simulating H and C chemical shifts that we recommend for further use. These protocols can help with the interpretation of experimental spectra, but we also show that they are also capable of structure prediction independently. This is possible because of the low mean absolute deviations of calculated shifts from the experiment (0.06 ppm for H and 1.09 ppm for C). We explore different solvation methods, basis sets, and optimization schemes to reach such accuracy. A correct sampling of the conformation phase space of flexible sugar molecules is also key to obtaining accurately converged theoretical chemical shifts. The linear regression method was applied to convert the calculated isotropic nuclear magnetic shielding constants to simulated chemical shifts comparable with the experiment. The achieved level of accuracy can help in utilizing chemical shifts for elucidating the 3D atomistic structure of saccharides in aqueous solutions. All linear regression parameters obtained on our extensive set of sugars for all the tested protocols can be reutilized in future works.

摘要

确定糖在其天然环境中的结构对于理解其功能以及更准确地靶向利用至关重要。核磁共振可观测到的现象,如核奥弗豪瑟效应或自旋-自旋耦合常数,通常用于研究天然水环境中的糖。然而,尽管化学位移对局部环境高度敏感,但在化合物鉴定中通常会忽略化学位移,尽管它们经常被测量。尽管化学位移具有相当大的结构信息,但它们与结构的直接关联却非常困难。这主要是由于大多数糖的化学性质相似,导致靠近糖 C 和 H 原子的物理化学环境相似,从而导致相似的化学位移。计算能力的提高使得人们能够计算可靠的化学位移,并利用它们来确定这些糖在溶液中的原子细节。然而,任何预测都受到所使用的计算方案及其准确性的严重限制。在这项工作中,我们研究了一组 31 种糖,在这些糖上我们评估了各种计算方案,以计算在水相环境中糖的 375 个 H 和 327 个 C 化学位移的总数。我们的研究提出了两种用于模拟 H 和 C 化学位移的具有成本效益的方案,我们建议进一步使用这些方案。这些方案有助于解释实验光谱,但我们也表明它们也能够独立进行结构预测。这是可能的,因为计算位移与实验的平均绝对偏差较小(H 为 0.06 ppm,C 为 1.09 ppm)。我们探索了不同的溶剂化方法、基组和优化方案,以达到如此的精度。灵活糖分子构象相空间的正确采样也是获得准确收敛的理论化学位移的关键。线性回归方法被应用于将计算得到的各向同性核磁共振屏蔽常数转换为与实验可比的模拟化学位移。所达到的精度水平有助于利用化学位移阐明水溶液中糖的 3D 原子结构。所有在我们广泛的糖数据集上针对所有测试方案获得的线性回归参数都可以在未来的工作中重新利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验