Suppr超能文献

通过使用E(3)等变图神经网络的GeqShift进行碳水化合物核磁共振化学位移预测。

Carbohydrate NMR chemical shift prediction by GeqShift employing E(3) equivariant graph neural networks.

作者信息

Bånkestad Maria, Dorst Kevin M, Widmalm Göran, Rönnols Jerk

机构信息

Department of Information Technology, Uppsala University Sweden

RISE Research Institutes of Sweden Stockholm Sweden.

出版信息

RSC Adv. 2024 Aug 22;14(36):26585-26595. doi: 10.1039/d4ra03428g. eCollection 2024 Aug 16.

Abstract

Carbohydrates, vital components of biological systems, are well-known for their structural diversity. Nuclear Magnetic Resonance (NMR) spectroscopy plays a crucial role in understanding their intricate molecular arrangements and is essential in assessing and verifying the molecular structure of organic molecules. An important part of this process is to predict the NMR chemical shift from the molecular structure. This work introduces a novel approach that leverages E(3) equivariant graph neural networks to predict carbohydrate NMR spectral data. Notably, our model achieves a substantial reduction in mean absolute error, up to threefold, compared to traditional models that rely solely on two-dimensional molecular structure. Even with limited data, the model excels, highlighting its robustness and generalization capabilities. The model is dubbed (geometric equivariant shift) and uses equivariant graph self-attention layers to learn about NMR chemical shifts, in particular since stereochemical arrangements in carbohydrate molecules are characteristics of their structures.

摘要

碳水化合物作为生物系统的重要组成部分,以其结构多样性而闻名。核磁共振(NMR)光谱在理解其复杂的分子排列中起着关键作用,并且对于评估和验证有机分子的分子结构至关重要。这个过程的一个重要部分是从分子结构预测NMR化学位移。这项工作引入了一种新颖的方法,利用E(3)等变图神经网络来预测碳水化合物NMR光谱数据。值得注意的是,与仅依赖二维分子结构的传统模型相比,我们的模型实现了平均绝对误差的大幅降低,高达三倍。即使数据有限,该模型也表现出色,突出了其稳健性和泛化能力。该模型被称为(几何等变化移),并使用等变图自注意力层来了解NMR化学位移,特别是因为碳水化合物分子中的立体化学排列是其结构的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c320/11340439/d09536ee599c/d4ra03428g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验