Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2022 Jun 22;144(24):10785-10797. doi: 10.1021/jacs.2c01768. Epub 2022 Jun 10.
The solubility of organic molecules is crucial in organic synthesis and industrial chemistry; it is important in the design of many phase separation and purification units, and it controls the migration of many species into the environment. To decide which solvents and temperatures can be used in the design of new processes, trial and error is often used, as the choice is restricted by unknown solid solubility limits. Here, we present a fast and convenient computational method for estimating the solubility of solid neutral organic molecules in water and many organic solvents for a broad range of temperatures. The model is developed by combining fundamental thermodynamic equations with machine learning models for solvation free energy, solvation enthalpy, Abraham solute parameters, and aqueous solid solubility at 298 K. We provide free open-source and online tools for the prediction of solid solubility limits and a curated data collection (SolProp) that includes more than 5000 experimental solid solubility values for validation of the model. The model predictions are accurate for aqueous systems and for a huge range of organic solvents up to 550 K or higher. Methods to further improve solid solubility predictions by providing experimental data on the solute of interest in another solvent, or on the solute's sublimation enthalpy, are also presented.
有机分子的溶解度在有机合成和工业化学中至关重要;它在许多相分离和纯化单元的设计中很重要,并且控制着许多物质向环境中的迁移。为了决定在新过程的设计中可以使用哪些溶剂和温度,通常需要进行反复试验,因为选择受到未知的固体溶解度极限的限制。在这里,我们提出了一种快速方便的计算方法,用于估算在很宽的温度范围内固体中性有机分子在水中和许多有机溶剂中的溶解度。该模型是通过将基本热力学方程与溶剂化自由能、溶剂化焓、Abraham 溶质参数和 298 K 时的水溶液固体溶解度的机器学习模型相结合来开发的。我们提供了免费的开源在线工具,用于预测固体溶解度极限,并提供了经过精心整理的数据集(SolProp),其中包括超过 5000 个实验固体溶解度值,用于验证该模型。该模型的预测结果准确适用于水相体系以及范围广泛的有机溶剂,最高可达 550 K 或更高。还提出了通过提供在另一种溶剂中有关溶质的实验数据或有关溶质升华焓的实验数据来进一步提高固体溶解度预测的方法。