Noh Juran, Doan Hieu A, Job Heather, Robertson Lily A, Zhang Lu, Assary Rajeev S, Mueller Karl, Murugesan Vijayakumar, Liang Yangang
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
Nat Commun. 2024 Mar 29;15(1):2757. doi: 10.1038/s41467-024-47070-5.
Solubility of redox-active molecules is an important determining factor of the energy density in redox flow batteries. However, the advancement of electrolyte materials discovery has been constrained by the absence of extensive experimental solubility datasets, which are crucial for leveraging data-driven methodologies. In this study, we design and investigate a highly automated workflow that synergizes a high-throughput experimentation platform with a state-of-the-art active learning algorithm to significantly enhance the solubility of redox-active molecules in organic solvents. Our platform identifies multiple solvents that achieve a remarkable solubility threshold exceeding 6.20 M for the archetype redox-active molecule, 2,1,3-benzothiadiazole, from a comprehensive library of more than 2000 potential solvents. Significantly, our integrated strategy necessitates solubility assessments for fewer than 10% of these candidates, underscoring the efficiency of our approach. Our results also show that binary solvent mixtures, particularly those incorporating 1,4-dioxane, are instrumental in boosting the solubility of 2,1,3-benzothiadiazole. Beyond designing an efficient workflow for developing high-performance redox flow batteries, our machine learning-guided high-throughput robotic platform presents a robust and general approach for expedited discovery of functional materials.
氧化还原活性分子的溶解度是氧化还原液流电池能量密度的一个重要决定因素。然而,电解质材料发现的进展受到缺乏广泛实验溶解度数据集的限制,而这些数据集对于利用数据驱动方法至关重要。在本研究中,我们设计并研究了一种高度自动化的工作流程,该流程将高通量实验平台与先进的主动学习算法相结合,以显著提高氧化还原活性分子在有机溶剂中的溶解度。我们的平台从一个包含2000多种潜在溶剂的综合库中识别出多种溶剂,这些溶剂能使原型氧化还原活性分子2,1,3-苯并噻二唑的溶解度达到超过6.20 M的显著阈值。值得注意的是,我们的综合策略对这些候选溶剂中不到10%的溶剂进行溶解度评估,突出了我们方法的效率。我们的结果还表明,二元溶剂混合物,特别是那些含有1,4-二氧六环的混合物,有助于提高2,1,3-苯并噻二唑的溶解度。除了设计一种用于开发高性能氧化还原液流电池的高效工作流程外,我们的机器学习引导的高通量机器人平台还提供了一种强大而通用的方法,用于快速发现功能材料。