Suppr超能文献

相似文献

2
SOMAS: a platform for data-driven material discovery in redox flow battery development.
Sci Data. 2022 Dec 1;9(1):740. doi: 10.1038/s41597-022-01814-4.
3
Predicting drug solubility in organic solvents mixtures: A machine-learning approach supported by high-throughput experimentation.
Int J Pharm. 2024 Jul 20;660:124233. doi: 10.1016/j.ijpharm.2024.124233. Epub 2024 May 18.
4
Advancing energy storage through solubility prediction: leveraging the potential of deep learning.
Phys Chem Chem Phys. 2023 Nov 29;25(46):31836-31847. doi: 10.1039/d3cp03992g.
6
A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
Acc Chem Res. 2023 May 16;56(10):1239-1250. doi: 10.1021/acs.accounts.3c00095. Epub 2023 Apr 24.
7
Active Learning Guided Computational Discovery of Plant-Based Redoxmers for Organic Nonaqueous Redox Flow Batteries.
ACS Appl Mater Interfaces. 2023 Dec 20;15(50):58309-58319. doi: 10.1021/acsami.3c11741. Epub 2023 Dec 10.
8
Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems.
Angew Chem Int Ed Engl. 2019 May 20;58(21):7045-7050. doi: 10.1002/anie.201902433. Epub 2019 Apr 17.
10
High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.
ACS Appl Mater Interfaces. 2022 Oct 31. doi: 10.1021/acsami.2c10072.

引用本文的文献

1
Evolution and Degradation Patterns of Electrochemical Cells Based on the Analysis of Interfacial Phenomena at Li Metal Anode/Electrolyte Interfaces.
J Phys Chem C Nanomater Interfaces. 2025 Aug 7;129(33):14687-14700. doi: 10.1021/acs.jpcc.5c04292. eCollection 2025 Aug 21.
4
Cosolvent electrolyte chemistries for high-voltage potassium-ion battery.
Natl Sci Rev. 2024 Oct 15;11(11):nwae359. doi: 10.1093/nsr/nwae359. eCollection 2024 Nov.
5
Combining High-Throughput Experiments and Active Learning to Characterize Deep Eutectic Solvents.
ACS Sustain Chem Eng. 2024 Sep 10;12(38):14218-14229. doi: 10.1021/acssuschemeng.4c04507. eCollection 2024 Sep 23.
6
Parallel and High Throughput Reaction Monitoring with Computer Vision.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413395. doi: 10.1002/anie.202413395. Epub 2024 Oct 31.
7
Self-Driving Laboratories for Chemistry and Materials Science.
Chem Rev. 2024 Aug 28;124(16):9633-9732. doi: 10.1021/acs.chemrev.4c00055. Epub 2024 Aug 13.

本文引用的文献

1
SOMAS: a platform for data-driven material discovery in redox flow battery development.
Sci Data. 2022 Dec 1;9(1):740. doi: 10.1038/s41597-022-01814-4.
3
Predicting Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures.
J Am Chem Soc. 2022 Jun 22;144(24):10785-10797. doi: 10.1021/jacs.2c01768. Epub 2022 Jun 10.
4
Machine learning for flow batteries: opportunities and challenges.
Chem Sci. 2022 Apr 7;13(17):4740-4752. doi: 10.1039/d2sc00291d. eCollection 2022 May 4.
5
Electrolyte Solvation Chemistry for the Solution of High-Donor-Number Solvent for Stable Li-S Batteries.
Small. 2022 Apr;18(16):e2200046. doi: 10.1002/smll.202200046. Epub 2022 Mar 9.
6
Accelerating organic solar cell material's discovery: high-throughput screening and .
Energy Environ Sci. 2021 Apr 23;14(6):3301-3322. doi: 10.1039/d1ee00559f.
7
Automated solubility screening platform using computer vision.
iScience. 2021 Feb 12;24(3):102176. doi: 10.1016/j.isci.2021.102176. eCollection 2021 Mar 19.
9
The role of energy storage in deep decarbonization of electricity production.
Nat Commun. 2019 Jul 30;10(1):3413. doi: 10.1038/s41467-019-11161-5.
10
Practical High-Throughput Experimentation for Chemists.
ACS Med Chem Lett. 2017 May 17;8(6):601-607. doi: 10.1021/acsmedchemlett.7b00165. eCollection 2017 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验