Suppr超能文献

通过稳定同位素示踪和宏基因组学揭示抗生素污染湿地沉积物中的磺胺代谢微生物和机制。

Sulfonamide-metabolizing microorganisms and mechanisms in antibiotic-contaminated wetland sediments revealed by stable isotope probing and metagenomics.

机构信息

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.

出版信息

Environ Int. 2022 Jul;165:107332. doi: 10.1016/j.envint.2022.107332. Epub 2022 Jun 3.

Abstract

Sulfonamide (SA) antibiotics are ubiquitous pollutants in livestock breeding and aquaculture wastewaters, which increases the propagation of antibiotic resistance genes. Microbes with the ability to degrade SA play important roles in SA dissipation, but their diversity and the degradation mechanism in the field remain unclear. In the present study, we employed DNA-stable isotope probing (SIP) combined with metagenomics to explore the active microorganisms and mechanisms of SA biodegradation in antibiotic-contaminated wetland sediments. DNA-SIP revealed various SA-assimilating bacteria dominated by members of Proteobacteria, such as Bradyrhizobium, Gemmatimonas, and unclassified Burkholderiaceae. Both sulfadiazine and sulfamethoxazole were dissipated mainly through the initial ipso-hydroxylation, and were driven by similar microbes. sadA gene, which encodes an NADH-dependent monooxygenase, was enriched in the C heavy DNA, confirming its catalytic capacity for the initial ipso-hydroxylation of SA in sediments. In addition, some genes encoding dioxygenases were also proposed to participate in SA hydroxylation and aromatic ring cleavage based on metagenomics analysis, which might play an important role in SA metabolism in the sediment ecosystem when Proteobacteria was the dominant active bacteria. Our work elucidates the ecological roles of uncultured microorganisms in their natural habitats and gives a deeper understanding of in-situ SA biodegradation mechanisms.

摘要

磺胺类(SA)抗生素是畜牧业和水产养殖业废水中普遍存在的污染物,这增加了抗生素耐药基因的传播。具有降解 SA 能力的微生物在 SA 消散中发挥着重要作用,但它们的多样性和现场降解机制仍不清楚。在本研究中,我们采用 DNA 稳定同位素探针(SIP)结合宏基因组学来探索受抗生素污染的湿地沉积物中 SA 生物降解的活性微生物和机制。DNA-SIP 揭示了以变形菌门成员为主的各种 SA 同化细菌,例如慢生根瘤菌、芽单胞菌和未分类的伯克霍尔德氏菌科。磺胺嘧啶和磺胺甲恶唑主要通过初始 ipso-羟基化而被消除,并且由相似的微生物驱动。sadA 基因,编码 NADH 依赖性单加氧酶,在 C 重 DNA 中富集,证实了其在沉积物中对 SA 的初始 ipso-羟基化的催化能力。此外,根据宏基因组学分析,还提出了一些编码双加氧酶的基因参与 SA 羟化和芳环裂解,当变形菌门是主要的活性细菌时,这可能在沉积物生态系统中 SA 代谢中发挥重要作用。我们的工作阐明了未培养微生物在其自然栖息地中的生态作用,并深入了解了原位 SA 生物降解机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验