Suppr超能文献

强化复杂干预措施随机对照试验的因果推断。

Strengthening causal inference from randomised controlled trials of complex interventions.

机构信息

Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington, District of Columbia, USA

Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, South Carolina, USA.

出版信息

BMJ Glob Health. 2022 Jun;7(6). doi: 10.1136/bmjgh-2022-008597.

Abstract

Researchers conducting randomised controlled trials (RCTs) of complex interventions face design and analytical challenges that are not fully addressed in existing guidelines. Further guidance is needed to help ensure that these trials of complex interventions are conducted to the highest scientific standards while maximising the evidence that can be extracted from each trial. The key challenge is how to manage the multiplicity of outcomes required for the trial while minimising false positive and false negative findings. To address this challenge, we formulate three principles to conduct RCTs: (1) outcomes chosen should be driven by the intent and programme theory of the intervention and should thus be linked to testable hypotheses; (2) outcomes should be adequately powered and (3) researchers must be explicit and fully transparent about all outcomes and hypotheses before the trial is started and when the results are reported. Multiplicity in trials of complex interventions should be managed through careful planning and interpretation rather than through post hoc analytical adjustment. For trials of complex interventions, the distinction between primary and secondary outcomes as defined in current guidelines does not adequately protect against false positive and negative findings. Primary outcomes should be defined as outcomes that are relevant based on the intervention intent and programme theory, declared (ie, registered), and adequately powered. The possibility of confirmatory causal inference is limited to these outcomes. All other outcomes (either undeclared and/or inadequately powered) are secondary and inference relative to these outcomes will be exploratory.

摘要

研究者在进行复杂干预措施的随机对照试验(RCT)时,面临着现有指南尚未充分解决的设计和分析挑战。需要进一步的指导,以帮助确保这些复杂干预措施的试验以最高的科学标准进行,同时最大限度地从每个试验中提取证据。关键挑战是如何在最小化假阳性和假阴性发现的同时,管理试验所需的多种结局。为了解决这一挑战,我们制定了三项原则来进行 RCT:(1)选择的结局应受干预的意图和计划理论驱动,因此应与可检验的假设相关联;(2)结局应充分有力;(3)在试验开始前和报告结果时,研究人员必须明确和充分透明地报告所有结局和假设。复杂干预措施试验中的多样性应通过仔细的规划和解释来管理,而不是通过事后分析调整。对于复杂干预措施的试验,当前指南中定义的主要和次要结局之间的区别并不能充分防止假阳性和假阴性发现。主要结局应根据干预意图和计划理论来定义,基于干预意图和计划理论来定义,声明(即注册),并且有足够的效力。这些结局可以进行确认性因果推断。所有其他结局(未声明和/或效力不足)均为次要结局,相对于这些结局的推断将是探索性的。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
8

引用本文的文献

9

本文引用的文献

3
Building Implementation Science in Nutrition.构建营养领域的实施科学。
Adv Nutr. 2020 Sep 1;11(5):1392-1398. doi: 10.1093/advances/nmaa066.
8
Scientists rise up against statistical significance.科学家们奋起反对统计显著性。
Nature. 2019 Mar;567(7748):305-307. doi: 10.1038/d41586-019-00857-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验