Suppr超能文献

一种新型的 PM2.5 浓度概率密度预测模型,结合了最小绝对值收缩和选择算子与分位数回归。

A novel PM2.5 concentrations probability density prediction model combines the least absolute shrinkage and selection operator with quantile regression.

机构信息

Department of Economic Management, North China Electric Power University, No. 689, Huadian Road, Baoding City, Hebei Province, China.

出版信息

Environ Sci Pollut Res Int. 2022 Nov;29(52):78265-78291. doi: 10.1007/s11356-022-21318-3. Epub 2022 Jun 11.

Abstract

PM2.5 has a significant negative impact on human health and atmospheric quality, and accurate prediction of its concentration is necessary. When using common point prediction models for PM2.5 concentration prediction, the influence of various uncertainties on PM2.5 concentrations makes the prediction results suffer from poor accuracy. To address this issue, this paper proposes the quantile regression neural network (QRNN) model based on the least absolute shrinkage and selection operator (LASSO), combined with kernel density estimation (KDE) for probabilistic density prediction of PM2.5 concentrations. The model uses LASSO regression to select the influential factors, and then the quartiles of daily PM2.5 concentrations calculated by the QRNN model are imported into the KDE model to obtain the probability density predictions of PM2.5 concentrations. In the paper, empirical analyses are carried out with the cities of Beijing and Jinan in China as well as six other datasets, and the prediction performance of the model is assessed by using evaluation criteria in both point prediction and interval prediction. The simulation reveals that the predictive performance of the LASSO-QRNN-KDE model is well, and the model is not only effective in filtering high-dimensional data, but also has a higher accuracy compared to common research models. In addition, the model is able to describe the uncertainty of PM2.5 concentration fluctuations and carry more information on the variation of PM2.5 concentrations, which can provide a novel and excellent PM2.5 concentration prediction tool for relevant policy makers.

摘要

PM2.5 对人类健康和大气质量有重大负面影响,因此需要对其浓度进行准确预测。在使用常见的点预测模型对 PM2.5 浓度进行预测时,各种不确定性对 PM2.5 浓度的影响使得预测结果准确性较差。针对这一问题,本文提出了基于最小绝对值收缩和选择算子 (LASSO) 的分位数回归神经网络 (QRNN) 模型,结合核密度估计 (KDE) 对 PM2.5 浓度进行概率密度预测。该模型使用 LASSO 回归选择有影响的因素,然后将 QRNN 模型计算的每日 PM2.5 浓度的四分位数导入 KDE 模型,以获得 PM2.5 浓度的概率密度预测。本文以中国的北京和济南以及其他六个数据集进行实证分析,并通过点预测和区间预测的评价标准评估模型的预测性能。模拟结果表明,LASSO-QRNN-KDE 模型的预测性能良好,该模型不仅在过滤高维数据方面有效,而且与常见的研究模型相比具有更高的准确性。此外,该模型能够描述 PM2.5 浓度波动的不确定性,并包含更多关于 PM2.5 浓度变化的信息,可为相关决策者提供一种新颖且出色的 PM2.5 浓度预测工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验