Suppr超能文献

将混合的原位卫星积雪水当量纳入国家水模型以改善美国两个河流流域的水文模拟

Assimilation of blended in situ-satellite snow water equivalent into the National Water Model for improving hydrologic simulation in two US river basins.

作者信息

Gan Yanjun, Zhang Yu, Liu Yuqiong, Kongoli Cezar, Grassotti Christopher

机构信息

Department of Civil Engineering, University of Texas at Arlington, Arlington, TX, USA.

LEN Technologies, Inc, Oak Hill, VA, USA.

出版信息

Sci Total Environ. 2022 Sep 10;838(Pt 4):156567. doi: 10.1016/j.scitotenv.2022.156567. Epub 2022 Jun 9.

Abstract

This study investigates the potential of assimilating a 1/8° blended in situ-satellite snow water equivalent (SWE) product for improving snow and streamflow predictions of the National Water Model (NWM). The blended product is assimilated into the NWM via a three-dimensional variational (3DVAR) scheme and a direct insertion (DI) scheme, with a daily (1d) and a every 5 days (5d) assimilation frequencies. The experiments are for the Upper Colorado River Basin (UCRB) and Susquehanna River Basin (SRB), which feature seasonal and ephemeral snow covers, respectively. Results indicate that 3DVAR with a 5d assimilation frequency generally outperforms the other scenarios. The assimilation of the blended SWE product mitigates the underestimation of SWE evident in the open-loop simulations for both basins and its impacts are more pronounced for UCRB than for SRB since snowfall is the main source of precipitation in the former. Assimilation leads to improved streamflow over a majority of SRB subbasins, but over a minority of UCRB subbasins. The degradations in streamflow for UCRB subbasins are mainly caused by the overestimated SWE. In addition, the open-loop simulation often produces an earlier streamflow peak in UCRB, and this error is mitigated to a limited extent by assimilation. These findings in aggregate suggest that the efficacy of snow assimilation is strongly dependent upon the types of snowpack and differential assimilation methods and frequencies.

摘要

本研究探讨了同化一种1/8°融合的原位-卫星雪水当量(SWE)产品以改善国家水模型(NWM)的积雪和径流预测的潜力。通过三维变分(3DVAR)方案和直接插入(DI)方案,以每日(1天)和每5天(5天)的同化频率将融合产品同化到NWM中。实验针对上科罗拉多河流域(UCRB)和萨斯奎哈纳河流域(SRB),这两个流域分别具有季节性和临时性积雪覆盖特征。结果表明,同化频率为5天的3DVAR方案通常优于其他方案。融合SWE产品的同化减轻了两个流域开环模拟中明显存在的SWE低估问题,并且由于降雪是前者降水的主要来源,其对UCRB的影响比对SRB更为显著。同化导致SRB的大多数子流域径流得到改善,但UCRB的少数子流域径流得到改善。UCRB子流域径流的退化主要是由高估的SWE造成的。此外,开环模拟在UCRB中常常产生更早的径流峰值,并且这种误差通过同化在一定程度上得到缓解。总体而言,这些发现表明积雪同化的效果强烈依赖于积雪类型以及不同的同化方法和频率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验