Suppr超能文献

将抗癌药物重新用于抑制 SARS-CoV-2 蛋白的多靶点抑制剂:从分子对接和 MD 模拟研究中获得的见解。

Repurposing of anti-lung cancer drugs as multi-target inhibitors of SARS-CoV-2 proteins: An insight from molecular docking and MD-simulation study.

机构信息

Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.

Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India.

出版信息

Microb Pathog. 2022 Aug;169:105615. doi: 10.1016/j.micpath.2022.105615. Epub 2022 Jun 8.

Abstract

Herein we have selected seventeen anti-lung cancer drugs to screen against Mpro, PLpro and spike glycoproteins of SARS-CoV-2to ascertain the potential therapeutic agent against COVID-19. ADMET profiling were employed to evaluate their pharmacokinetic properties. Molecular docking studies revealed that Capmatinib (CAP) showed highest binding affinity against the selected proteins of SARS-CoV-2. Molecular Dynamics (MD) simulation and the analysis of RMSD, RMSF, and binding energy confirmed the abrupt conformational changes of the proteins due to the presence of this drug. These findings provide an opportunity for doing advanced experimental research to evaluate the potential drug to combat COVID-19.

摘要

在此,我们选择了 17 种抗肺癌药物对 SARS-CoV-2 的 Mpro、PLpro 和刺突糖蛋白进行筛选,以确定针对 COVID-19 的潜在治疗药物。我们还采用了 ADMET 分析来评估它们的药代动力学性质。分子对接研究表明,卡马替尼(CAP)对 SARS-CoV-2 的选定蛋白表现出最高的结合亲和力。分子动力学(MD)模拟和 RMSD、RMSF 和结合能的分析证实了由于存在这种药物,这些蛋白的构象发生了突然变化。这些发现为开展更深入的实验研究提供了机会,以评估这种有潜力的抗 COVID-19 药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验