Suppr超能文献

针对 SARS-CoV-2 主蛋白酶的选择性潜在抗病毒药物的分子对接、结合模式分析、分子动力学和 ADMET/毒性性质预测:药物再利用以对抗 COVID-19 的努力。

Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19.

机构信息

Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

出版信息

Mol Divers. 2021 Aug;25(3):1905-1927. doi: 10.1007/s11030-021-10188-5. Epub 2021 Feb 13.

Abstract

The importance of the main protease (M) enzyme of SARS-CoV-2 in the digestion of viral polyproteins introduces M as an attractive drug target for antiviral drug design. This study aims to carry out the molecular docking, molecular dynamics studies, and prediction of ADMET properties of selected potential antiviral molecules. The study provides an insight into biomolecular interactions to understand the inhibitory mechanism and the spatial orientation of the tested ligands and further, identification of key amino acid residues within the substrate-binding pocket that can be applied for structure-based drug design. In this regard, we carried out molecular docking studies of chloroquine (CQ), hydroxychloroquine (HCQ), remdesivir (RDV), GS441524, arbidol (ARB), and natural product glycyrrhizin (GA) using AutoDock 4.2 tool. To study the drug-receptor complex's stability, selected docking possesses were further subjected to molecular dynamics studies with Schrodinger software. The prediction of ADMET/toxicity properties was carried out on ADMET Prediction™. The docking studies suggested a potential role played by CYS145, HIS163, and GLU166 in the interaction of molecules within the active site of COVID-19 M. In the docking studies, RDV and GA exhibited superiority in binding with the crystal structure of M over the other selected molecules in this study. Spatial orientations of the molecules at the active site of M exposed the significance of S1-S4 subsites and surrounding amino acid residues. Among GA and RDV, RDV showed better and stable interactions with the protein, which is the reason for the lesser RMSD values for RDV. Overall, the present in silico study indicated the direction to combat COVID-19 using FDA-approved drugs as promising agents, which do not need much toxicity studies and could also serve as starting points for lead optimization in drug discovery.

摘要

新型冠状病毒主蛋白酶(M)在病毒多蛋白消化中的重要性使其成为抗病毒药物设计的有吸引力的药物靶点。本研究旨在对选定的潜在抗病毒分子进行分子对接、分子动力学研究和 ADMET 性质预测。该研究深入了解生物分子相互作用,以了解测试配体的抑制机制和空间取向,并进一步确定底物结合口袋内的关键氨基酸残基,这些残基可应用于基于结构的药物设计。在这方面,我们使用 AutoDock 4.2 工具对氯喹(CQ)、羟氯喹(HCQ)、瑞德西韦(RDV)、GS441524、阿比朵尔(ARB)和天然产物甘草酸(GA)进行了分子对接研究。为了研究药物-受体复合物的稳定性,进一步对选定的对接物进行了分子动力学研究,使用的是 Schrodinger 软件。ADMET/toxicity 性质预测是在 ADMET Prediction™上进行的。对接研究表明,CYS145、HIS163 和 GLU166 在 COVID-19 M 的活性位点内分子相互作用中发挥了潜在作用。在对接研究中,RDV 和 GA 与本研究中其他选定分子相比,在与 M 的晶体结构结合方面表现出优越性。分子在 M 的活性位点的空间取向暴露了 S1-S4 亚位点和周围氨基酸残基的重要性。在 GA 和 RDV 中,RDV 与蛋白质的相互作用更好且更稳定,这就是 RDV 的 RMSD 值较小的原因。总的来说,本计算机模拟研究为使用已获 FDA 批准的药物作为有前途的药物来对抗 COVID-19 指明了方向,这些药物不需要进行太多的毒性研究,并且还可以作为药物发现中先导优化的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cde/7882058/8dcdbb0fafe0/11030_2021_10188_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验