Suppr超能文献

作为一种用于推断死后经过时间的工具,拉曼光谱的关键方面。

Critical aspects of Raman spectroscopy as a tool for postmortem interval estimation.

机构信息

Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490, MABLab- Adiposité Médullaire et Os, F-59000, Lille, France.

Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59000, Lille, France.

出版信息

Talanta. 2022 Nov 1;249:123589. doi: 10.1016/j.talanta.2022.123589. Epub 2022 May 30.

Abstract

The estimation of the postmortem interval (PMI) from skeletal remains represents a challenging task in forensic science. PMI is often influenced by extrinsic factors (humidity, dryness, scavengers, etc.) and intrinsic factors (age, sex, pathology, way of life, medical treatments, etc.). Raman spectroscopy combined with multivariate data analysis represents a promising tool for forensic anthropologists. Despite all the advantages of the technique, Raman spectra of skeletal remains are influenced by these extrinsic and intrinsic factors, which impairs precision and reproducibility. Both parameters have to reach a high level of confidence when such spectroscopy is used as a way to predict PMI. As a consequence, advanced multivariate data analysis is necessary to quantify the effect of all factors to improve the estimation of the PMI. The objective of this work is to evaluate the effect of intrinsic and extrinsic factors on the Raman spectra of skeletal remains. We designed a protocol close to a real-world scenario. We used ANOVA-simultaneous component analysis (ASCA) to unmix and quantify the effect of 1 intrinsic (source body) and 1 extrinsic (burial time) factors on the Raman spectra. In our model, the burial time was found to generate the highest variability after the source body. ASCA showed that the variability due to the burial time has 2 mixed contributions. Seasonal variations are the first contribution. The second contribution is attributed to diagenesis. A decrease in the mineral bands and an increase in the organic bands are observed. The source body was also found to contribute to the variability in Raman spectra. ASCA showed that the source body induces variability related to the composition of bones. This quantification cannot be assessed by basic chemometrics methods such as PCA. The results of this study highlighted the need to use an advanced chemometric data analysis tool (like ASCA) combined with Raman spectroscopy to estimate the postmortem interval.

摘要

从骨骼遗骸估计死后间隔(PMI)是法医学中的一项具有挑战性的任务。PMI 通常受到外在因素(湿度、干燥、食腐动物等)和内在因素(年龄、性别、病理学、生活方式、医疗治疗等)的影响。拉曼光谱结合多元数据分析是法医人类学家的一种很有前途的工具。尽管该技术具有所有优势,但骨骼遗骸的拉曼光谱受到这些外在和内在因素的影响,从而影响了精度和重现性。当这种光谱技术被用作预测 PMI 的方法时,这两个参数都必须达到高度置信水平。因此,需要先进的多元数据分析来量化所有因素的影响,以提高 PMI 的估计。本工作的目的是评估内在和外在因素对骨骼遗骸拉曼光谱的影响。我们设计了一个接近实际情况的方案。我们使用方差分析-同时成分分析(ASCA)来解混并量化 1 个内在(来源体)和 1 个外在(埋葬时间)因素对拉曼光谱的影响。在我们的模型中,发现埋葬时间比来源体产生更高的可变性。ASCA 表明,由于埋葬时间引起的可变性具有 2 个混合贡献。季节性变化是第一个贡献。第二个贡献归因于成岩作用。观察到矿物质带减少和有机带增加。来源体也被发现对拉曼光谱的可变性有贡献。ASCA 表明,来源体引起与骨骼组成相关的可变性。这种变异性不能通过基本化学计量学方法(如 PCA)来评估。本研究的结果强调需要使用先进的化学计量学数据分析工具(如 ASCA)结合拉曼光谱来估计死后间隔。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验