Suppr超能文献

利用基于配体的计算方法将FDA批准的药物重新用作可能的抗SARS-CoV-2药物:基于排名差异总和的模型选择

Repurposing FDA approved drugs as possible anti-SARS-CoV-2 medications using ligand-based computational approaches: sum of ranking difference-based model selection.

作者信息

De Priyanka, Kumar Vinay, Kar Supratik, Roy Kunal, Leszczynski Jerzy

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India.

Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217 USA.

出版信息

Struct Chem. 2022;33(5):1741-1753. doi: 10.1007/s11224-022-01975-3. Epub 2022 Jun 7.

Abstract

UNLABELLED

The worldwide burden of coronavirus disease 2019 (COVID-19) is still unremittingly prevailing, with more than 440 million infections and over 5.9 million deaths documented so far since the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The non-availability of treatment further aggravates the scenario, thereby demanding the exploration of pre-existing FDA-approved drugs for their effectiveness against COVID-19. The current research aims to identify potential anti-SARS-CoV-2 drugs using a computational approach and repurpose them if possible. In the present study, we have collected a set of 44 FDA-approved drugs of different classes from a previously published literature with their potential antiviral activity against COVID-19. We have employed both regression- and classification-based quantitative structure-activity relationship (QSAR) modeling to identify critical chemical features essential for anticoronaviral activity. Multiple models with the consensus algorithm were employed for the regression-based approach to improve the predictions. Additionally, we have employed a machine learning-based read-across approach using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and linear discriminant analysis for the efficient prediction of potential drug candidate for COVID-19. Finally, the quantitative prediction ability of different modeling approaches was compared using the sum of ranking differences (SRD). Furthermore, we have predicted a true external set of 98 pharmaceuticals using the developed models for their probable anti-COVID activity and their prediction reliability was checked employing the "Prediction Reliability Indicator" tool available from https://dtclab.webs.com/software-tools. Though the present study does not target any protein of viral interaction, the modeling approaches developed can be helpful for identifying or screening potential anti-coronaviral drug candidates.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11224-022-01975-3.

摘要

未标注

2019年冠状病毒病(COVID-19)的全球负担仍在持续肆虐,自严重急性呼吸综合征冠状病毒2(SARS-CoV-2)大流行以来,迄今已有超过4.4亿例感染病例和超过590万例死亡病例记录在案。治疗方法的缺乏进一步加剧了这种情况,因此需要探索美国食品药品监督管理局(FDA)先前批准的药物对COVID-19的有效性。当前的研究旨在使用计算方法识别潜在的抗SARS-CoV-2药物,并在可能的情况下对其进行重新利用。在本研究中,我们从先前发表的文献中收集了一组44种不同类别的FDA批准药物及其对COVID-19的潜在抗病毒活性。我们采用了基于回归和分类的定量构效关系(QSAR)模型来识别抗冠状病毒活性所必需的关键化学特征。基于回归的方法采用了具有共识算法的多个模型来改进预测。此外,我们使用了基于机器学习的类推方法,该方法使用可从https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home获得的Read-Across-v3.1以及线性判别分析来有效预测COVID-19的潜在候选药物。最后,使用排名差异总和(SRD)比较了不同建模方法的定量预测能力。此外,我们使用开发的模型预测了一组98种药物的真实外部集,以评估它们可能的抗COVID活性,并使用可从https://dtclab.webs.com/software-tools获得的“预测可靠性指标”工具检查了它们的预测可靠性。尽管本研究未针对任何病毒相互作用蛋白,但所开发的建模方法有助于识别或筛选潜在的抗冠状病毒候选药物。

补充信息

在线版本包含可在10.1007/s11224-022-01975-3获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4801/9171098/18dfaf648e6d/11224_2022_1975_Fig1_HTML.jpg

相似文献

2
Prediction reliability of QSAR models: an overview of various validation tools.
Arch Toxicol. 2022 May;96(5):1279-1295. doi: 10.1007/s00204-022-03252-y. Epub 2022 Mar 10.
5
Integrated computational approach towards repurposing of antimalarial drug against SARS-CoV-2 main protease.
Struct Chem. 2022;33(5):1409-1422. doi: 10.1007/s11224-022-01916-0. Epub 2022 May 27.
7
Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening.
Comb Chem High Throughput Screen. 2021;24(3):441-454. doi: 10.2174/1386207323999200730205447.
10
Identification of SARS-CoV-2 inhibitors through phylogenetics and drug repurposing.
Struct Chem. 2022;33(5):1789-1797. doi: 10.1007/s11224-022-02019-6. Epub 2022 Jul 26.

引用本文的文献

1
FDA-approved drugs as potential covalent inhibitors of key SARS-CoV-2 proteins: an in silico approach.
Turk J Biol. 2025 Apr 7;49(3):233-246. doi: 10.55730/1300-0152.2741. eCollection 2025.
2
Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.
J Xenobiot. 2024 Dec 4;14(4):1901-1918. doi: 10.3390/jox14040101.
4
MIG1, TUP1 and NRG1 mediated yeast to hyphal morphogenesis inhibition in Candida albicans by ganciclovir.
Braz J Microbiol. 2024 Sep;55(3):2047-2056. doi: 10.1007/s42770-024-01344-8. Epub 2024 May 24.
6
Dicoumarol is an effective post-exposure prophylactic for SARS-CoV-2 Omicron infection in human airway epithelium.
Signal Transduct Target Ther. 2023 Jun 10;8(1):242. doi: 10.1038/s41392-023-01511-7.

本文引用的文献

1
First report of q-RASAR modeling toward an approach of easy interpretability and efficient transferability.
Mol Divers. 2022 Oct;26(5):2847-2862. doi: 10.1007/s11030-022-10478-6. Epub 2022 Jun 29.
2
Prediction reliability of QSAR models: an overview of various validation tools.
Arch Toxicol. 2022 May;96(5):1279-1295. doi: 10.1007/s00204-022-03252-y. Epub 2022 Mar 10.
3
Races of small molecule clinical trials for the treatment of COVID-19: An up-to-date comprehensive review.
Drug Dev Res. 2022 Feb;83(1):16-54. doi: 10.1002/ddr.21895. Epub 2021 Nov 11.
4
Repurposing Anti-Cancer Drugs for COVID-19 Treatment.
Drug Des Devel Ther. 2020 Nov 18;14:5045-5058. doi: 10.2147/DDDT.S282252. eCollection 2020.
5
A review on drug repurposing applicable to COVID-19.
Brief Bioinform. 2021 Mar 22;22(2):726-741. doi: 10.1093/bib/bbaa288.
6
modeling for quick prediction of inhibitory activity against 3CL enzyme in SARS CoV diseases.
J Biomol Struct Dyn. 2022 Feb;40(3):1010-1036. doi: 10.1080/07391102.2020.1821779. Epub 2020 Sep 21.
8
Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs.
Antimicrob Agents Chemother. 2020 Jun 23;64(7). doi: 10.1128/AAC.00819-20.
10
COVID-19-New Insights on a Rapidly Changing Epidemic.
JAMA. 2020 Apr 14;323(14):1339-1340. doi: 10.1001/jama.2020.3072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验