Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain.
Phys Med Biol. 2012 Oct 7;57(19):6167-91. doi: 10.1088/0031-9155/57/19/6167. Epub 2012 Sep 13.
Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.
在接受高能光子放射治疗的患者中,中子的外周污染被认为是引发继发性癌症的一个风险因素。因此,对器官特异性的中子当量剂量进行估计对于合理评估这些相关风险至关重要。本工作旨在开发一种方法,以估计放射治疗患者多个器官的中子当量剂量。该方法涉及在人体模型的 16 个参考点处,将归一化的蒙特卡罗中子通量能谱与比释动能和与能量相关的辐射权重因子进行卷积。然后,通过在相同的参考点处用无源探测器测量的总中子通量进行缩放,以获得器官中的当量剂量。将后者与在体模照射期间位于治疗室内的中子数字探测器的读数相关联。这个数字探测器是由我们小组设计和开发的,它集成了热中子通量。将该关联模型应用于患者照射期间的数字探测器读数,可实现在线估计器官中的中子当量剂量。该模型考虑了特定的照射部位、射野参数(能量、射野大小、入射角等)和安装情况(直线加速器和防护设施的几何形状)。这种适合常规临床使用的方法,将有助于系统地生成剂量学数据,从而改进当前的风险估计模型。