Suppr超能文献

氮化钒纳米颗粒修饰的氮掺杂碳纳米管/氮掺杂碳纳米片杂化物:一种用于电化学电容器的碳氮自牺牲法

Vanadium nitride nanoparticle decorated N-doped carbon nanotube/N-doped carbon nanosheet hybrids a CN self-sacrificing method for electrochemical capacitors.

作者信息

Liu Jinghua, He Xiong, Guo Fei, Liu Baosheng, Sun Zijun, Zhang Li, Chang Haixin

机构信息

School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology Liuzhou 545000 China.

Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China.

出版信息

RSC Adv. 2022 May 19;12(24):15354-15360. doi: 10.1039/d2ra02789e. eCollection 2022 May 17.

Abstract

Owing to the wide negative potential window (∼1.2 V) along with high specific capacitance (1340 F g) in alkaline electrolyte, vanadium nitride (VN) has been served as promising negative supercapacitor electrode material. However, VN is easy to dissolve during cycling process and shows low capacitance retainability. Herein, a hybrid electrode (marked as VN/NCNT/NCN), featuring VN nanoparticles and N-doped carbon nanotube inserted in N-doped carbon nanosheets, has been fabricated with a facile CN self-sacrificing method. The porous structure and high conductive carbon skeleton, as well as the uniform distribution of VN nanoparticles give VN/NCNT/NCN a great amount of active site and fulfill excellent electrochemical performance for VN/NCNT/NCN-based electrode. The as-fabricated hybrid electrode exhibits a maximum specific capacitance of 232.9 F g at 1 A g. Moreover, the cycling performance has been greatly improved and the specific capacitance remains 91% after 5000 cycles.

摘要

由于在碱性电解质中具有较宽的负电位窗口(约1.2V)以及高比电容(1340F/g),氮化钒(VN)已成为一种有前景的负极超级电容器电极材料。然而,VN在循环过程中容易溶解,且电容保持率较低。在此,通过一种简便的CN自牺牲方法制备了一种混合电极(标记为VN/NCNT/NCN),其具有插入氮掺杂碳纳米片中的VN纳米颗粒和氮掺杂碳纳米管。多孔结构和高导电碳骨架,以及VN纳米颗粒的均匀分布,赋予VN/NCNT/NCN大量的活性位点,并使其基于VN/NCNT/NCN的电极具有优异的电化学性能。所制备的混合电极在1A/g时表现出232.9F/g的最大比电容。此外,循环性能得到了极大改善,在5000次循环后比电容仍保持91%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2481/9119319/be6b30758d08/d2ra02789e-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验