Suppr超能文献

分析一种与长链非编码RNA相关的特征以预测膀胱癌患者的生存情况。

Analysis of a Long Non-coding RNA associated Signature to Predict Survival in Patients with Bladder Cancer.

作者信息

Zhong Wenwen, Qu Hu, Yao Bing, Wang Dejuan, Qiu Jianguang

机构信息

Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, CHN.

出版信息

Cureus. 2022 May 8;14(5):e24818. doi: 10.7759/cureus.24818. eCollection 2022 May.

Abstract

BACKGROUND

The study aimed to find a potential long non-coding RNA (lncRNA) model related to survival in bladder cancer by analyzing data in The Cancer Genome Atlas (TCGA).

METHODS

We downloaded the gene expression data from the TCGA and analyzed the differentially expressed lncRNAs (DELs) between tumor and normal tissues. Patients were divided into training and testing groups, and a prognostic risk score model with lncRNAs was constructed by using data in the training group using multivariate Cox and lasso regression analysis. We divided patients into high-and low-risk groups according to the median value in the lncRNA signature model. Survival and receiver operating characteristic (ROC) curves were visualized in both groups. Further, we validated the model in the testing group.

RESULTS

We screened 169 DELs for bladder cancer. The univariate Cox regression analysis showed that 13 lncRNAs were associated with prognosis with a value <0.01. We selected 12 of these lncRNAs to perform a multivariate Cox analysis to build the lncRNA signature. The formula with nine lncRNAs, namely, MIR497HG, LINC00968, NALCN-AS1, LINC02321, RNF144A-AS1, MNX1-AS1, FLJ22447, LINC01956, FLJ42969, was significantly related to prognosis. Patients in the high-risk group had a lower survival rate compared with the low-risk group in the training and testing sets (both pvalues < 0.05) and the area of the ROC curve was 0.737 and 0.68, respectively.

CONCLUSIONS

The study illustrated a significant lncRNA signature and indicated the risk score Cox model could be an important biomarker to predict the prognosis of bladder cancer.

摘要

背景

本研究旨在通过分析癌症基因组图谱(TCGA)中的数据,寻找与膀胱癌生存相关的潜在长链非编码RNA(lncRNA)模型。

方法

我们从TCGA下载了基因表达数据,并分析了肿瘤组织与正常组织之间差异表达的lncRNA(DEL)。将患者分为训练组和测试组,并使用多变量Cox和套索回归分析,利用训练组的数据构建lncRNA的预后风险评分模型。根据lncRNA特征模型的中位数将患者分为高风险组和低风险组。两组均绘制生存曲线和受试者工作特征(ROC)曲线。此外,我们在测试组中验证了该模型。

结果

我们筛选出169个膀胱癌的DEL。单变量Cox回归分析显示,13个lncRNA与预后相关,p值<0.01。我们选择其中12个lncRNA进行多变量Cox分析以构建lncRNA特征。由9个lncRNA组成的公式,即MIR497HG、LINC00968、NALCN-AS1、LINC02321、RNF144A-AS1、MNX1-AS1、FLJ22447、LINC01956、FLJ42969,与预后显著相关。在训练集和测试集中,高风险组患者的生存率低于低风险组(p值均<0.05),ROC曲线面积分别为0.737和0.68。

结论

本研究阐明了一个显著的lncRNA特征,并表明风险评分Cox模型可能是预测膀胱癌预后的重要生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a4f/9172899/99741c692260/cureus-0014-00000024818-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验