Suppr超能文献

基于集成核典型变量分析和贝叶斯推理的非线性动态过程监测

Nonlinear Dynamic Process Monitoring Based on Ensemble Kernel Canonical Variate Analysis and Bayesian Inference.

作者信息

Wang Xuemei, Wu Ping

机构信息

School of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.

出版信息

ACS Omega. 2022 May 24;7(22):18904-18921. doi: 10.1021/acsomega.2c01892. eCollection 2022 Jun 7.

Abstract

By considering autocorrelation among process data, canonical variate analysis (CVA) can noticeably enhance fault detection performance. To monitor nonlinear dynamic processes, a kernel CVA (KCVA) model was developed by performing CVA in the kernel space generated by kernel principal component analysis (KPCA). The Gaussian kernel is widely adopted in KPCA for nonlinear process monitoring. In Gaussian kernel-based process monitoring, a single learner is represented by a certain selected kernel bandwidth. However, the selection of kernel bandwidth plays a pivotal role in the performance of process monitoring. Usually, the kernel bandwidth is determined manually. In this paper, a novel ensemble kernel canonical variate analysis (EKCVA) method is developed by integrating ensemble learning and kernel canonical variate analysis. Compared to a single learner, the ensemble learning method usually achieves greatly superior generalization performance through the combination of multiple base learners. Inspired by the ensemble learning method, KCVA models are established by using different kernel bandwidths. Further, two widely used and monitoring statistics are constructed for each model. To improve process monitoring performance, these statistics are combined through Bayesian inference. A numerical example and two industrial benchmarks, the continuous stirred-tank reactor process and the Tennessee Eastman process, are carried out to demonstrate the superiority of the proposed method.

摘要

通过考虑过程数据之间的自相关,典型变量分析(CVA)可以显著提高故障检测性能。为了监测非线性动态过程,通过在核主成分分析(KPCA)生成的核空间中执行CVA,开发了一种核CVA(KCVA)模型。高斯核在基于KPCA的非线性过程监测中被广泛采用。在基于高斯核的过程监测中,单个学习器由某个选定的核带宽表示。然而,核带宽的选择对过程监测的性能起着关键作用。通常,核带宽是手动确定的。本文通过集成集成学习和核典型变量分析,开发了一种新颖的集成核典型变量分析(EKCVA)方法。与单个学习器相比,集成学习方法通常通过多个基学习器的组合实现大大优越的泛化性能。受集成学习方法的启发,使用不同的核带宽建立KCVA模型。此外,为每个模型构建了两个广泛使用的监测统计量。为了提高过程监测性能,通过贝叶斯推理将这些统计量进行组合。进行了一个数值例子和两个工业基准测试,即连续搅拌釜式反应器过程和田纳西伊士曼过程,以证明所提出方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139a/9178625/a9923ff2d252/ao2c01892_0004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验