Suppr超能文献

利用机器学习分类器实现的聚二乙炔传感器对溶解氨的定量比色检测。

Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers.

作者信息

Siribunbandal Papaorn, Kim Yong-Hoon, Osotchan Tanakorn, Zhu Zhigang, Jaisutti Rawat

机构信息

Department of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand.

Research Unit in Innovative Sensors and Nanoelectronic Devices, Thammasat University, Pathumthani 12121, Thailand.

出版信息

ACS Omega. 2022 May 26;7(22):18714-18721. doi: 10.1021/acsomega.2c01419. eCollection 2022 Jun 7.

Abstract

Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.

摘要

对于水生生态系统和水产养殖产品的管理而言,易于使用且能进行现场溶解氨检测至关重要,因为低水平的氨会导致严重的健康风险并危害水生生物。这项工作展示了基于聚二乙炔(PDA)传感器和机器学习分类器对溶解氨进行定量肉眼检测。PDA囊泡由二乙炔单体通过简便的绿色化学合成方法组装而成,在接触溶解氨时会呈现从蓝色到红色的颜色转变,且肉眼可检测到。通过紫外可见光谱研究了定量颜色变化,发现随着氨浓度增加,640nm处的吸收峰逐渐降低,540nm处的吸收峰升高。所制备的PDA传感器对氨的检测限低于10ppm,响应时间为20分钟。此外,将PDA传感器储存在冰箱中可稳定运行长达60天。此外,使用带有机器学习分类器的比色图像对溶解氨进行了定量现场监测。使用支持向量机作为机器学习模型,分别使用扫描仪和智能手机拍摄的彩色RGB图像,氨浓度分类的准确率分别高达100%和95.1%。这些结果表明,使用所开发的PDA传感器,可以通过智能手机和机器学习过程实现对溶解氨的简单肉眼检测,且具有更高的准确性和现场检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e276/9178764/e953096dc9f0/ao2c01419_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验