Department of CSE, USICT, Gautam Buddha University, Greater Noida, India.
Department of Mathematics, Govt. S. N. P. G. College, Khandwa, India.
Comput Intell Neurosci. 2022 Jun 1;2022:4867630. doi: 10.1155/2022/4867630. eCollection 2022.
This work suggests a method to identify personality traits regarding the targeted film clips in real-time. Such film clips elicit feelings in people while capturing their brain impulses using the electroencephalogram (EEG) devices and examining personality traits. The Myers-Briggs Type Indicator (MBTI) paradigm for determining personality is employed in this study. The fast Fourier transform (FFT) approach is used for feature extraction, and we have used hybrid genetic programming (HGP) for EEG data classification. We used a single-channel NeuroSky MindWave 2 dry electrode unit to obtain the EEG data. In order to collect the data, thirty Hindi and English video clips were placed in a conventional database. Fifty people volunteered to participate in this study and willingly provided brain signals. Using this dataset, we have generated four two-class HGP classifiers (HGP1, HGP2, HGP3, and HGP4), one for each group of MBTI traits overall classification accuracy of the HGP classifier as 82.25% for 10-fold cross-validation partition.
这项工作提出了一种实时识别目标电影片段中人格特质的方法。这些电影片段在捕捉人们的大脑冲动的同时引发人们的情感,使用脑电图(EEG)设备并检查人格特质。本研究采用 Myers-Briggs 类型指标(MBTI)范式来确定人格。快速傅里叶变换(FFT)方法用于特征提取,我们使用混合遗传编程(HGP)进行 EEG 数据分类。我们使用单通道 NeuroSky MindWave 2 干电极单元获取 EEG 数据。为了收集数据,我们在传统数据库中放置了三十个印地语和英语视频片段。五十人自愿参加这项研究,并自愿提供脑信号。使用这个数据集,我们生成了四个二分类 HGP 分类器(HGP1、HGP2、HGP3 和 HGP4),每个 MBTI 特质组一个,HGP 分类器的整体分类准确率为 10 倍交叉验证分区的 82.25%。